library(nycflights13)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.8 ✔ dplyr 1.1.0
## ✔ tidyr 1.2.1 ✔ stringr 1.4.1
## ✔ readr 2.1.2 ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(dplyr)
flight <- flights
tail <- group_by(flight, tailnum)
hol <- summarize(tail, delay=mean(arr_delay, na.rm=TRUE))
arr <- arrange(hol, delay)
####El avión N844MH tiene el peor tiempo de impuntualidad con 320 minutos.
hora <- group_by(flight, hour)
hol2 <- summarize(hora, arr_delay=mean(arr_delay, na.rm=TRUE))
arr2 <- arrange(hol2, arr_delay)
flight %>%
#find all airports with > 1 carrier
group_by(dest) %>% #agrupar por destino
mutate(n_carriers = n_distinct(carrier))%>% #crea una nueva columna, llamada n_carriers
filter(n_carriers > 1) %>%
#rank carriers by number of destinations
group_by(carrier) %>%
summarize(n_dest = n_distinct(dest)) %>%
arrange(desc(n_dest))
## # A tibble: 16 × 2
## carrier n_dest
## <chr> <int>
## 1 EV 51
## 2 9E 48
## 3 UA 42
## 4 DL 39
## 5 B6 35
## 6 AA 19
## 7 MQ 19
## 8 WN 10
## 9 OO 5
## 10 US 5
## 11 VX 4
## 12 YV 3
## 13 FL 2
## 14 AS 1
## 15 F9 1
## 16 HA 1