$y_comm
animal cg ph ssf purge imf moist cookl plantL plantA plantB L_M1_M2
1 1 7003 5.68 10.925 NA 1.26 NA NA 46.50 -2.2747 20.6245 NA
2 2 7003 5.52 11.530 NA 1.45 NA NA 50.66 -2.4326 21.0791 NA
3 3 7005 5.48 13.090 NA 4.03 NA NA 51.12 -0.0843 18.3517 NA
4 4 7003 6.00 16.790 NA 2.98 NA NA 44.16 0.8251 15.0149 NA
5 5 7005 5.50 12.750 NA 1.17 NA NA 52.21 -1.5025 20.2692 NA
6 6 7003 5.61 12.215 NA 1.90 NA NA 48.27 -2.3384 17.9502 NA
A_M1_M2 B_M1_M2
1 NA NA
2 NA NA
3 NA NA
4 NA NA
5 NA NA
6 NA NA
$y_marc
animal sex age cg plant ttloss ssf imf ph purge color_l color_a
1 200521304 2 189 4 2 21.47 12.61 2.09 5.9 2.29 NA NA
2 200521402 2 201 7 2 24.89 12.97 2.20 5.6 3.33 NA NA
3 200521405 2 224 11 2 23.24 15.39 2.61 5.8 3.90 NA NA
4 200521502 2 207 8 2 24.47 13.55 2.27 5.9 1.63 NA NA
5 200521504 2 207 8 2 21.96 12.79 1.90 5.9 3.14 NA NA
6 200521601 2 215 10 2 25.86 15.12 2.33 5.8 1.94 NA NA
color_b
1 NA
2 NA
3 NA
4 NA
5 NA
6 NA
$y_msu
animal sex age_slg cgsl car_wt wbs fat ph24 dripl cieL cieA cieB avgCl_Cb
1 991001 1 182 3 97.51 2.35 3.33 5.54 0.63 56.04 18.35 7.95 31.995
2 991002 2 161 1 78.00 3.28 3.79 5.50 1.36 NA NA NA NA
3 991003 1 161 1 99.77 2.44 1.90 5.40 1.61 NA NA NA NA
4 991004 2 161 1 86.62 3.29 1.28 5.33 1.72 NA NA NA NA
5 991006 2 179 3 60.77 3.06 2.64 5.52 0.80 53.36 18.25 6.89 30.125
6 991007 1 161 1 83.45 2.61 2.02 5.47 3.28 NA NA NA NA
cook_yi cookl ph45m bf10 NA NA NA
1 81.49 18.51 6.36 33.02 40.64 33.02 25.40
2 77.93 22.07 6.32 21.59 46.99 30.48 20.32
3 78.90 21.10 7.03 27.94 49.53 36.83 29.21
4 76.26 23.74 6.16 15.24 33.02 21.59 12.70
5 76.81 23.19 6.19 22.86 33.02 17.78 12.70
6 75.75 24.25 6.29 21.59 40.64 27.94 20.32
A good variable to analyze first is ultimate PH (named Ph or Ph24, ). Covariates are contemporary slaughter group (cg or cgsl) and age at slaughter (age or age_sgl) if available.
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: ph24 ~ sex + age_slg + (1 | cgsl)
Data: y_msu
REML criterion at convergence: -1150.3
Scaled residuals:
Min 1Q Median 3Q Max
-2.6408 -0.6187 -0.0769 0.4412 5.6483
Random effects:
Groups Name Variance Std.Dev.
cgsl (Intercept) 0.004568 0.06759
Residual 0.015304 0.12371
Number of obs: 927, groups: cgsl, 32
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.732340 0.202127 41.944695 28.360 <2e-16 ***
sex -0.019847 0.008472 899.102873 -2.343 0.0194 *
age_slg -0.001097 0.001220 42.281713 -0.899 0.3738
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr) sex
sex -0.009
age_slg -0.996 -0.053
lmer(ph~sex+age+(1|cg),data=y_marc)%>%summary()
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: ph ~ sex + age + (1 | cg)
Data: y_marc
REML criterion at convergence: -388.7
Scaled residuals:
Min 1Q Median 3Q Max
-2.2042 -0.6168 -0.1372 0.4896 7.3658
Random effects:
Groups Name Variance Std.Dev.
cg (Intercept) 0.002818 0.05309
Residual 0.025680 0.16025
Number of obs: 531, groups: cg, 29
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.8704737 0.1458112 56.8693925 40.261 <2e-16 ***
age -0.0002926 0.0007394 57.3334417 -0.396 0.694
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
(Intr)
age -0.997
fit warnings:
fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
SNP names (in the order of genotype matrix), animal ID (in the order of genotype matrix), population (in the order of animals in genotype matrix) and SNP map are stored in R objects saved in the metadata.Rdata file.
Genotype data is provided in loingeno.txt (SNP in rows and animals in columns), column ID match animal ID column in phenotype files. Note: some genotyped animals have missing phenotypes and viceversa.
library(data.table)
Attaching package: 'data.table'
The following objects are masked from 'package:dplyr':
between, first, last
The following object is masked from 'package:purrr':
transpose