Characterizing plant assemblies

Identify plant assemblages highlighting dominant and indicator species of the pastoral mountains in Castril, Santiago and Pontones (CSP) pasturelands.

We hypothesise that pastoral commons shape plant diversity in CSP. Second, we hypothesise that livestock mobility, referred here to long- or short-transhumance, shape vegetation in CSP.

Transect repartition

Assessing patterns in the ‘arrangement’ of plant transects by employing ordination methods in order to evaluate the effect of transhumance and commons on plant diversity.

NMDS

nmds_results_csp <- metaMDS(comm = community_data_presence_2,distance = "bray",  k=4, trymax=1000)   
round(nmds_results_csp$stress, digits = 3)
## [1] 0.125
sites_scores_csp  <- as.data.frame(scores(nmds_results_csp$points))
sites_scores_csp = sites_scores_csp  %>% mutate(site3) 
sites_scores_csp = sites_scores_csp %>% separate(site3,into = c("common","code"),sep=1) %>% separate(code,into = c("code","thr"),sep=2)
sites_scores_csp <- within(sites_scores_csp, {common<-factor(common)})
#sites_scores_csp[11,5] <- "P" # S05 --> P05

species_scores_csp <- as.data.frame(scores(nmds_results_csp, "species"))
species_scores_csp = species_scores_csp%>% filter(if_any(everything(), ~ .x >= 0.6)|if_any(everything(), ~ .x <= -0.6))

Dimensions one and two of the NMDS

ggplot(sites_scores_csp, aes(x = MDS1, y = MDS2, label = site3,colour=common)) +  
  geom_text_repel(alpha = 1, size = 3)  + theme_minimal() + theme(legend.position = "bottom") + ylim(-1.0,1.2) + xlim(-1.2,1)
Figure 1: Site ordination

Figure 1: Site ordination

ggplot(data = species_scores_csp, aes(x = NMDS1, y = NMDS2, label = rownames(species_scores_csp))) + theme_minimal() +
  geom_text_repel(color ="dodgerblue4",alpha = 0.6, size = 2.5,max.overlaps = 100,force = 1) + ylim(-1.2,1.2) + xlim(-1.2,1.2)
Figure 2: Species ordination

Figure 2: Species ordination

Here I highlighted those species featuring more than 0.5 in one of the axis (I do so because of a matter of overlapping in the graph)

Dimensions one and three of the NMDS

(d1_3_a = ggplot(sites_scores_csp, aes(x = MDS1, y = MDS3, label = site3,color=common)) + 
                               geom_text_repel(alpha = 1, size = 3) + theme_minimal())+ theme(legend.position = "bottom") + ylim(-1.0,1.2) + xlim(-1.2,1)
Figure 3: Site ordination

Figure 3: Site ordination

(d1_3_b = ggplot(species_scores_csp, aes(x = NMDS1, y = NMDS3, label = rownames(species_scores_csp))) + theme_minimal()  +  geom_text_repel(color ="dodgerblue4",alpha = 0.6, size = 2.5,max.overlaps = 100,force = 1) + ylim(-1.2,1.2) + xlim(-1.2,1.2)) #check_overlap = TRUE) +
Figure 4: Species ordination

Figure 4: Species ordination

Ellipses by commons

par(mfrow=c(1,2))
ade4::s.class(sites_scores_csp[,c(1,2)],factor(sites_scores_csp$common), cellipse=1, cstar=0,
              ylim = c(-1.0,1.2),xlim = c(-1.2,1))  
text(sites_scores_csp[,c(1,2)],labels=site3,adj=c(-.1,-.8),cex=0.6)


ade4::s.class(sites_scores_csp[,c(1,3)],factor(sites_scores_csp$common), cellipse=1, cstar=0,
              ylim = c(-1.0,1.2),xlim = c(-1.2,1))  
text(sites_scores_csp[,c(1,3)],labels=site3,adj=c(-.1,-.9),cex=0.6)
left : axes 1-2 NMDS ; right: axes 1-3 NMDS

left : axes 1-2 NMDS ; right: axes 1-3 NMDS

Ellipses by transhumance modality

par(mfrow=c(1,2))
ade4::s.class(sites_scores_csp[,c(1,2)],factor(sites_scores_csp$thr), cellipse=1, cstar=0,
              ylim = c(-1.0,1.2),xlim = c(-1.2,1))  
text(sites_scores_csp[,c(1,2)],labels=site3,adj=c(-.1,-.8),cex=0.6)


ade4::s.class(sites_scores_csp[,c(1,3)],factor(sites_scores_csp$thr), cellipse=1, cstar=0,
              ylim = c(-1.0,1.2),xlim = c(-1.2,1))  
text(sites_scores_csp[,c(1,3)],labels=site3,adj=c(-.1,-.9),cex=0.6)
left : axes 1-2 NMDS ; right: axes 1-3 NMDS

left : axes 1-2 NMDS ; right: axes 1-3 NMDS

As first view, there is neither an arrangement related to common nor an arrangement related to long- or short-transhumance. In the further analysis we will dissect long- or short-transhumance, i.e., into day of entry in the summer pasture lands or how many days they stay in the mountains considering also the stoking rate, to find the possible signature of livestock mobility in the vegetation.

Also from the graphs, we draw that there is a greater dispersion in plant diversity in Castril than Santiago and Pontones. Also this latter shows greater dispersion than Santiago.So, interestingly, the geographical distances do not seem to fully modulate the plant repartition. In further analysis, the geographical distances should be explicitly considered.

Cluster analysis

Non hierarchical clustering; k-means. This procedure maximize the among-group variability.
The best k-means partition is indicated by the highest Simple Structure Index (SSI) value. In our case, 6 clusters feature the highest SSI.

library(vegan) ; library(factoextra)
spe.norm <- decostand(community_data_presence_2, "nor")
spe.KM.cascade = cascadeKM(spe.norm,inf.gr = 2,sup.gr = 8,iter = 100, criterion = "ssi")
plot(spe.KM.cascade, sortg = TRUE)
Figure 5: Different K-means clustering (left) and ssi criterion (right). Objects = Plant transects

Figure 5: Different K-means clustering (left) and ssi criterion (right). Objects = Plant transects

Clusters in CSP plant transects

Table 1: Transects and their related transect group

spe.kmeans <- kmeans(spe.norm, centers = 6, nstart = 100) ; spe.kmeans.g <- spe.kmeans$cluster
(cluster_csp = as.data.frame(spe.kmeans.g) %>% mutate(transect=rownames(.)) %>% 
  group_by(spe.kmeans.g) %>% dplyr::summarise_all(list(~toString(unique(.)))))
## # A tibble: 6 × 2
##   spe.kmeans.g transect                                            
##          <int> <chr>                                               
## 1            1 C01s, C02s, S01s, S04l, S06l                        
## 2            2 S12s, P02s, P06l                                    
## 3            3 C03s, S07l, S09l, S10l, S11s, P01l, P03s, P04s, P05l
## 4            4 S02s, P05s, P07l                                    
## 5            5 C04l, C05l, C06s                                    
## 6            6 S03l, S08l, P08s
fviz_cluster(spe.kmeans, data = spe.norm,geom = c("point","text"), repel = TRUE,ellipse.type = "convex",ggtheme = theme_bw())
Figure 6: Plant transects and their related transect group of k-means clustering

Figure 6: Plant transects and their related transect group of k-means clustering

Indicator species

\[A_{ij} = N individuals_{ij} /N individuals_{i}\] \[B_{ij} = N sites_{ij} /N sites_{j}\]

\[IndVal_{ij} = A_{ij} * B_{ij} * 100\]

(DufrĂȘne and Legendre, 1997)

For each species i in each site group j:

Indicator species by transect groups

library(indicspecies)
indval = multipatt(community_data_presence_2, spe.kmeans.g,duleg = TRUE,control = how(nperm=1000))
summary(indval, indvalcomp=TRUE)
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: IndVal.g
##  Significance level (alpha): 0.05
## 
##  Total number of species: 200
##  Selected number of species: 23 
##  Number of species associated to 1 group: 23 
##  Number of species associated to 2 groups: 0 
##  Number of species associated to 3 groups: 0 
##  Number of species associated to 4 groups: 0 
##  Number of species associated to 5 groups: 0 
## 
##  List of species associated to each combination: 
## 
##  Group 1  #sps.  4 
##                            A      B  stat  p.value    
## Hippocrepis_bourgaei  0.8045 0.8000 0.802 0.010989 *  
## Sedum_album           0.6429 0.8000 0.717 0.030969 *  
## Koeleria_vallesiana   0.4373 1.0000 0.661 0.003996 ** 
## Helianthemum_cinereum 0.3326 1.0000 0.577 0.000999 ***
## 
##  Group 2  #sps.  6 
##                        A      B  stat  p.value    
## Minuartia_hybrida 0.6660 1.0000 0.816 0.003996 ** 
## Galium_minutulum  0.5732 1.0000 0.757 0.006993 ** 
## Senecio_minutus   0.8571 0.6667 0.756 0.017982 *  
## Veronica_sp       0.5587 1.0000 0.747 0.009990 ** 
## Velezia_rigida    0.5000 1.0000 0.707 0.035964 *  
## Poa_ligulata      0.4331 1.0000 0.658 0.000999 ***
## 
##  Group 3  #sps.  1 
##                          A      B  stat  p.value    
## Thymus_serpylloides 0.4531 1.0000 0.673 0.000999 ***
## 
##  Group 4  #sps.  5 
##                          A      B  stat p.value   
## Bromus_tectorum     0.7850 1.0000 0.886 0.00799 **
## Festuca_larga/suave 0.7664 1.0000 0.875 0.01299 * 
## Galium_verum        1.0000 0.6667 0.816 0.02797 * 
## Bromus_hordeaceus   0.6034 1.0000 0.777 0.01499 * 
## Festuca_sp          0.7742 0.6667 0.718 0.02797 * 
## 
##  Group 5  #sps.  5 
##                                          A      B  stat  p.value    
## Pilosella_pseudopilosella           0.9066 1.0000 0.952 0.000999 ***
## Aegilops_geniculata                 0.8160 1.0000 0.903 0.008991 ** 
## Crataegus_sp                        1.0000 0.6667 0.816 0.048951 *  
## Lotus_corniculatus-subsp-carpetanus 1.0000 0.6667 0.816 0.036963 *  
## Helianthemum_appenninum             0.5371 1.0000 0.733 0.008991 ** 
## 
##  Group 6  #sps.  2 
##                           A      B  stat p.value   
## Arenaria_tetraquetra 0.5743 1.0000 0.758   0.014 * 
## Festuca_hystrix      0.3316 1.0000 0.576   0.004 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dominant species

We calculate the Specific Contribution that is the Specific Frequency of a species divided by the sum of the Specific Frequencies of all the species evaluated in the 100 points of the transect. Those species featuring a Specific Contribution exceeding 10% are considered as dominant (Daget and Poissonet 1971).

test = community_data_presence_2   %>%  as.data.frame(.) %>%  mutate(total_count = rowSums(.)) ; abundance <- test
for (i in 1:(ncol(test) - 1)) { abundance[i] <- abundance[i] / abundance$total_count }

Dominant species by transect groups

In the Table highlighted the species that exceed a Specific Contribution of 10% in all the transects of a given group.
In the next table you can see all the dominant species by transect.

spe.kmeans.g transect ind_species d_species
1 C01s, C02s, S01s, S04l, S06l Helianthemum_cinereum, Koeleria_vallesiana, Hippocrepis_bourgaei, Sedum_album Thymus_serpylloides, Helianthemum_cinereum
2 S12s, P02s, P06l Poa_ligulata, Minuartia_hybrida, Veronica_sp, Senecio_minutus, Galium_minutulum, Velezia_rigida Poa_ligulata
3 C03s, S07l, S09l, S10l, S11s, P01l, P03s, P04s, P05l Thymus_serpylloides Thymus_serpylloides
4 S02s, P05s, P07l Bromus_tectorum, Festuca_larga/suave, Bromus_hordeaceus, Festuca_sp, Galium_verum Festuca_hystrix
5 C04l, C05l, C06s Pilosella_pseudopilosella, Helianthemum_appenninum, Aegilops_geniculata, Crataegus_sp, Lotus_corniculatus-subsp-carpetanus Pilosella_pseudopilosella
6 S03l, S08l, P08s Festuca_hystrix, Arenaria_tetraquetra Festuca_hystrix

The group featuring only Thymus serpylloides as indicator species and the group highlighting Sedum album may point out stony and xeric slope. Thyme-related plant community (Tomillares) and the dry perennial herbaceous community are usually present on stony limestone and dolomitic places. Similarly, the group characterized by Festuca hystrix and Arenaria tetraquetra may feature reduced topsoil and be in steep and xeric areas.

The group S12s, P02s, P06l highlights therophyte plants as indicator species. These plant species thrive in somewhat nitrogen-rich soils and xeric areas. Also, it is interesting, Poa ligulata as indicador and dominant species as this is a characteristic plant of the dry perennial herbaceous community but it is more present in disturbance-prone dry perennial communities (Mercado 2011; Blanca et al. 2011).

Regarding the group composed of C04l, C05l, C06s, two (Lotus corniculatus, Pilosella pseudopilosella) out of five indicator species are mesophyllous plant mostly associated to herbaceous community with deeper or/and richer soils. Here, we could surmise deep soil and good water retention capacity. Also, Aegilops geniculata as indicator species may indicate nitrogen-rich soils that could be the results of former crops (Mercado 2011). Similarly, the group of S02s, S05s, P07l, Bromus tectorum, Bromus hordeaceus and Galium verum may indicate nitrogen-rich soils areas yet the areas of this group may be stony as Festuca spp, which are indicator species, were usually founded in near rocks and stones.

Indicator species by transhumance modality and common

## groups_thr
##  1  2 
## 13 13
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: IndVal.g
##  Significance level (alpha): 0.05
## 
##  Total number of species: 200
##  Selected number of species: 2 
##  Number of species associated to 1 group: 2 
## 
##  List of species associated to each combination: 
## 
##  Group 2  #sps.  2 
##                             A      B  stat p.value  
## Petrorhagia_nanteuilii 0.7368 0.7692 0.753   0.032 *
## Trifolium_campestre    1.0000 0.3846 0.620   0.045 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## groups_csp
##  1  2  3 
##  6 11  9
## 
##  Multilevel pattern analysis
##  ---------------------------
## 
##  Association function: IndVal.g
##  Significance level (alpha): 0.05
## 
##  Total number of species: 200
##  Selected number of species: 12 
##  Number of species associated to 1 group: 11 
##  Number of species associated to 2 groups: 1 
## 
##  List of species associated to each combination: 
## 
##  Group 1  #sps.  9 
##                                          A      B  stat p.value   
## Pilosella_pseudopilosella           0.9526 0.8333 0.891 0.00500 **
## Aegilops_geniculata                 0.8586 0.8333 0.846 0.00400 **
## Bufonia_tenuifolia                  0.8366 0.6667 0.747 0.00599 **
## Ononis_spinosa                      0.7857 0.6667 0.724 0.01499 * 
## Acinos_alpinus                      0.8462 0.5000 0.650 0.02298 * 
## Crataegus_sp                        1.0000 0.3333 0.577 0.04496 * 
## Lotus_corniculatus-subsp-carpetanus 1.0000 0.3333 0.577 0.04496 * 
## Medicago_lupulina                   1.0000 0.3333 0.577 0.04795 * 
## Galium_sp                           1.0000 0.3333 0.577 0.04496 * 
## 
##  Group 2  #sps.  1 
##                            A      B  stat p.value  
## Scabiosa_andryaefolia 1.0000 0.4545 0.674   0.016 *
## 
##  Group 3  #sps.  1 
##                        A      B  stat p.value  
## Anthemis_arvensis 0.9072 0.4444 0.635   0.039 *
## 
##  Group 1+2  #sps.  1 
##                              A      B  stat p.value  
## Helianthemum_appenninum 0.9126 0.8235 0.867   0.049 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dominant species by transect

Plant species featuring Specific Contribution greater than 10% by transect.

transect d_species
C01s Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum
C02s Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum, Koeleria_vallesiana
C03s Thymus_serpylloides, Festuca_hystrix, Bromus_tectorum
C04l Festuca_hystrix, Pilosella_pseudopilosella
C05l Festuca_hystrix, Pilosella_pseudopilosella, Ononis_spinosa
C06s Pilosella_pseudopilosella, Aegilops_geniculata, Xeranthemum_inapertum
P01l Thymus_serpylloides
P02s Thymus_serpylloides, Poa_ligulata, Sedum_amplexicaule
P03s Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum
P04s Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum
P05l Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum, Arenaria_tetraquetra
P05s Festuca_hystrix, Poa_bulbosa, Bromus_tectorum
P06l Poa_ligulata, Minuartia_hybrida
P07l Festuca_hystrix, Poa_bulbosa, Festuca_larga/suave
P08s Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum
S01s Thymus_serpylloides, Helianthemum_cinereum, Koeleria_vallesiana
S02s Festuca_hystrix, Bromus_tectorum, Sedum_acre
S03l Festuca_hystrix
S04l Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum
S06l Thymus_serpylloides, Helianthemum_cinereum
S07l Thymus_serpylloides, Helianthemum_cinereum
S08l Thymus_serpylloides, Festuca_hystrix, Helianthemum_cinereum
S09l Thymus_serpylloides, Helianthemum_cinereum, Cerastium_brachypetalum-subsp-brachypetalum
S10l Thymus_serpylloides, Helianthemum_cinereum
S11s Thymus_serpylloides, Erinacea_anthyllis
S12s Thymus_serpylloides, Festuca_hystrix, Poa_ligulata, Minuartia_hybrida