# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol)%>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
asset_returns_tbl
## # A tibble: 300 × 3
## asset date returns
## <chr> <date> <dbl>
## 1 AGG 2013-01-31 -0.00623
## 2 AGG 2013-02-28 0.00589
## 3 AGG 2013-03-28 0.000985
## 4 AGG 2013-04-30 0.00964
## 5 AGG 2013-05-31 -0.0202
## 6 AGG 2013-06-28 -0.0158
## 7 AGG 2013-07-31 0.00269
## 8 AGG 2013-08-30 -0.00830
## 9 AGG 2013-09-30 0.0111
## 10 AGG 2013-10-31 0.00829
## # … with 290 more rows
#Symbols
symbols <- asset_returns_tbl %>%
distinct(asset) %>%
pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
#Weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
# tq_portfolio()
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # … with 50 more rows
Scatterplot
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = date, y = portfolio.returns)) +
geom_point(color = "cornflowerblue") +
#Formatting
scale_x_date(date_breaks = "1 year",
date_labels = "%Y") +
#Labeling
labs(y = "Monthly Returns",
x = NULL,
title = "Portfolio Returns Scatter")
Histogram
portfolio_returns_tbl %>%
ggplot(mapping = aes(portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.005) +
labs(x = "returns",
title = "Portfolio Returns Distribution")
Portfolio Histogram and Density
portfolio_returns_tbl %>%
ggplot(mapping = aes(portfolio.returns)) +
geom_histogram(fill = "cornflowerblue", binwidth = 0.01) +
geom_density() +
#Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "Returns",
y = "Density",
title = "Portfolio Histogram & Density")