GSS OLS regression with Environmental module questions

options(Ncores = 12)
library(tidyverse, quietly = T)
library(haven, quietly = T)
gss <- haven::read_dta(
  unz("2021_stata.zip",
      filename = "GSS2021.dta")
)

Exploratory analysis without ‘as many as you want’ category

library(tidylog, quietly = T)
gss_sub0 <- gss %>%
  haven::zap_labels() %>%
  mutate(
    chldidel_fctr1 = factor(case_when(chldidel %in% c(0:1) ~ "1small (0-1)",
                               chldidel %in% c(2:3) ~ "2normative (2-3)",
                               chldidel %in% c(4:7) ~ "3large (4+)",
                               chldidel %in% c(8)   ~ "4As many")),
    chldidel_fctr1 = relevel(chldidel_fctr1, ref = "2normative (2-3)"),
    
    chldidel_fctr2 = factor(case_when(chldidel %in% c(0:1) ~ "1small (0-1)",
                               chldidel %in% c(2:3) ~ "2normative (2-3)",
                               chldidel %in% c(4:7) ~ "3large (4+)")),
    chldidel_fctr2 = relevel(chldidel_fctr2, ref = "2normative (2-3)"),
    chldidel_rc = if_else(chldidel == 8, NA_real_, chldidel),
    grngroup_rc = if_else(grngroup == 2, 0, grngroup),
    grnsign_rc = if_else(grnsign == 2, 0, grnsign),
    grnmoney_rc = if_else(grnmoney == 2, 0, grnmoney),
    grndemo_rc = if_else(grndemo == 2, 0, grndemo),
    # grneffme_rc = case_when(grneffme %in% c(1:2) ~ "1Agree",
    #                         grneffme %in% c(3)   ~ "2Neutral",
    #                         grneffme %in% c(3:4) ~ "3Disagree"),
    educ = case_when(degree %in% 0 ~ "1Less than HS",
                     degree %in% 1 ~ "2High School",
                     degree %in% 2 ~ "3Associate's",
                     degree %in% 3 ~ "4Bachelor's",
                     degree %in% 4 ~ "5Graduate"),
    sex_rc = if_else(sex == 1, "Male", "Female")
  ) %>%
  select(chldidel_fctr1, chldidel_fctr2, scigrn:recycle, impgrn:grnexagg, grncon, helpharm:nobuygrn,
         clmtcaus:watergen1, nukegen1, grngroup_rc:grndemo_rc)
# Filter data sets one that includes "as many children as you want and another that excludes that category
gss_sub1 <- gss_sub0 %>% 
  select(-chldidel_fctr2) %>%
  filter(complete.cases(.))

gss_sub2 <- gss_sub0 %>% 
  select(-chldidel_fctr1) %>%
  filter(complete.cases(.))
# Load packages for OLS regressgion
require(foreign)
require(nnet)
require(ggplot2)
require(reshape2)
# create function to use in `lapply`
ols <- function(x){
  test <- multinom(chldidel_fctr2 ~ x, data = gss_sub2)
  summary(test)
}
# Run lapply to run models individual models for each column
models <- lapply(gss_sub2[,-1], ols)

exp(coef) and P scores for all models

# modern science will solve our environmental problems with little change to our way of life. agree -> disagree
exp(coef(models$scigrn))
             (Intercept)         x
1small (0-1)  0.01599843 1.4238654
3large (4+)   0.18802536 0.7864887
z <- models[["scigrn"]][["coefficients"]]/models[["scigrn"]][["standard.errors"]]
p.1 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.1
              (Intercept)          x
1small (0-1) 4.720433e-10 0.03739824
3large (4+)  1.593655e-04 0.06275212
# REVERSE we worry to much about the future of the environment and not enough about prices and jobs today. agree -> disagree
exp(coef(models$grnecon))
             (Intercept)         x
1small (0-1)  0.02014481 1.3304279
3large (4+)   0.18781241 0.7879459
z <- models[["grnecon"]][["coefficients"]]/models[["grnecon"]][["standard.errors"]]
p.2 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.2
              (Intercept)          x
1small (0-1) 1.001133e-10 0.05825442
3large (4+)  1.820508e-05 0.03414529
# Almost everything we do in modern life harms the environment. agree -> disagree
exp(coef(models$harmsgrn))
             (Intercept)         x
1small (0-1)  0.30671267 0.5034092
3large (4+)   0.03981383 1.2964075
z <- models[["harmsgrn"]][["coefficients"]]/models[["harmsgrn"]][["standard.errors"]]
p.3 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.3
              (Intercept)           x
1small (0-1) 5.602564e-03 0.000178314
3large (4+)  6.217249e-15 0.049660008
# REVERSE People worry too much about human progress harming the environment. agree -> disagree
exp(coef(models$grnprog))
             (Intercept)         x
1small (0-1) 0.009885877 1.6036714
3large (4+)  0.252218200 0.7173735
z <- models[["grnprog"]][["coefficients"]]/models[["grnprog"]][["standard.errors"]]
p.4 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.4
              (Intercept)           x
1small (0-1) 2.519118e-11 0.005580390
3large (4+)  5.761770e-04 0.005434729
# REVERSE In order to protect the environment, America needs economic growth. agree -> disagree
exp(coef(models$grwthelp))
             (Intercept)         x
1small (0-1)  0.01554121 1.5628116
3large (4+)   0.12862930 0.8510827
z <- models[["grwthelp"]][["coefficients"]]/models[["grwthelp"]][["standard.errors"]]
p.5 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.5
              (Intercept)           x
1small (0-1) 1.110223e-15 0.004531289
3large (4+)  1.204056e-07 0.247593091
# Economic growth always harms the environment. agree -> disagree
exp(coef(models$grwtharm))
             (Intercept)         x
1small (0-1)  0.38822451 0.5613616
3large (4+)   0.08081607 1.0095530
z <- models[["grwtharm"]][["coefficients"]]/models[["grwtharm"]][["standard.errors"]]
p.6 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.6
              (Intercept)            x
1small (0-1) 8.219131e-02 0.0006434065
3large (4+)  9.226511e-06 0.9518184738
# How willing would you be to pay much higher prices in order to protect the environment. willing -> unwilling
exp(coef(models$grnprice))
             (Intercept)         x
1small (0-1)  0.22529153 0.5787458
3large (4+)   0.03144631 1.3871594
z <- models[["grnprice"]][["coefficients"]]/models[["grnprice"]][["standard.errors"]]
p.7 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.7
              (Intercept)           x
1small (0-1) 0.0002720241 0.001266329
3large (4+)  0.0000000000 0.003730646
# How willing would you be to pay much higher taxes in order to protect the environment. willing -> unwilling
exp(coef(models$grntaxes))
             (Intercept)         x
1small (0-1)   0.2111440 0.6217405
3large (4+)    0.0362254 1.2924001
z <- models[["grntaxes"]][["coefficients"]]/models[["grntaxes"]][["standard.errors"]]
p.8 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.8
              (Intercept)            x
1small (0-1) 3.724554e-05 0.0008085019
3large (4+)  0.000000e+00 0.0149425992
# How willing would you be to accep cuts in your standard of living in order to protect the environment. willing -> unwilling
exp(coef(models$grnsol))
             (Intercept)         x
1small (0-1)   0.2407448 0.5861042
3large (4+)    0.0567172 1.1337794
z <- models[["grnsol"]][["coefficients"]]/models[["grnsol"]][["standard.errors"]]
p.9 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.9
              (Intercept)            x
1small (0-1) 3.187297e-04 0.0004838332
3large (4+)  1.154632e-14 0.2537110282
# It is just too difficult for someone like me to do much about the environment. agree -> disagree
exp(coef(models$toodifme))
             (Intercept)        x
1small (0-1)   0.0586940 0.998327
3large (4+)    0.1597516 0.824396
z <- models[["toodifme"]][["coefficients"]]/models[["toodifme"]][["standard.errors"]]
p.10 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.10
              (Intercept)         x
1small (0-1) 3.368835e-07 0.9913529
3large (4+)  2.415932e-05 0.1271260
# I do what is right for the environment even when it costs more moeny or takes more time. agree -> disagree
exp(coef(models$ihlpgrn))
             (Intercept)         x
1small (0-1)  0.15236363 0.6613829
3large (4+)   0.03084646 1.4722249
z <- models[["ihlpgrn"]][["coefficients"]]/models[["ihlpgrn"]][["standard.errors"]]
p.11 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.11
              (Intercept)          x
1small (0-1) 1.510146e-04 0.05196130
3large (4+)  8.881784e-16 0.01177566
# How often do you make a special effort to sort glass/cans/plastic/newspapers for recycling? always - never
exp(coef(models$recycle))
             (Intercept)         x
1small (0-1)  0.06167961 0.9679037
3large (4+)   0.07936896 1.0301445
z <- models[["recycle"]][["coefficients"]]/models[["recycle"]][["standard.errors"]]
p.13 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.13
             (Intercept)         x
1small (0-1)           0 0.8337872
3large (4+)            0 0.8152507
# REVERSE There are more important things to do in life than protect the environment. agree -> disagree
exp(coef(models$impgrn))
             (Intercept)         x
1small (0-1)  0.02600714 1.2460649
3large (4+)   0.31349749 0.6759648
z <- models[["impgrn"]][["coefficients"]]/models[["impgrn"]][["standard.errors"]]
p.14 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.14
              (Intercept)           x
1small (0-1) 1.431149e-08 0.185177697
3large (4+)  7.665590e-03 0.002416867
# There is no point in doing what I can for the environment unless others do the same. agree -> disagree
exp(coef(models$othssame))
             (Intercept)        x
1small (0-1)  0.02303774 1.280911
3large (4+)   0.22287095 0.754923
z <- models[["othssame"]][["coefficients"]]/models[["othssame"]][["standard.errors"]]
p.15 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.15
              (Intercept)          x
1small (0-1) 2.001410e-08 0.14453277
3large (4+)  5.282277e-04 0.02200009
# REVERSE Many of the claims about environmental threats are exaggerated. agree -> disagree
exp(coef(models$grnexagg))
             (Intercept)         x
1small (0-1)  0.00560499 1.7974085
3large (4+)   0.24891099 0.7281017
z <- models[["grnexagg"]][["coefficients"]]/models[["grnexagg"]][["standard.errors"]]
p.16 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.16
              (Intercept)            x
1small (0-1) 1.351141e-11 0.0008997355
3large (4+)  1.936733e-04 0.0031436330
# How concerned are you about environmental issues? not -> very
exp(coef(models$grncon))
             (Intercept)         x
1small (0-1) 0.002436775 2.0816682
3large (4+)  0.159442528 0.8468047
z <- models[["grncon"]][["coefficients"]]/models[["grncon"]][["standard.errors"]]
p.17 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.17
              (Intercept)            x
1small (0-1) 1.409681e-09 0.0006350077
3large (4+)  4.498223e-05 0.1424282777
# I find it hard to know whether the way I live is helpful or harmful to the environment. agree -> disagree
exp(coef(models$helpharm))
             (Intercept)         x
1small (0-1)  0.01791454 1.4111910
3large (4+)   0.25730144 0.6972412
z <- models[["helpharm"]][["coefficients"]]/models[["helpharm"]][["standard.errors"]]
p.18 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.18
              (Intercept)           x
1small (0-1) 5.144354e-10 0.051384808
3large (4+)  1.535189e-03 0.008392807
# Environmental problems have a direct effect on my everyday life. agree -> disagree
exp(coef(models$grneffme))
             (Intercept)         x
1small (0-1)  0.15702662 0.6805455
3large (4+)   0.04794334 1.2138357
z <- models[["grneffme"]][["coefficients"]]/models[["grneffme"]][["standard.errors"]]
p.19 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.19
              (Intercept)          x
1small (0-1) 1.034364e-05 0.01753054
3large (4+)  3.175238e-14 0.13018624
# How often do you avoid buying certain products for environmental reasons? always -> never
exp(coef(models$nobuygrn))
             (Intercept)        x
1small (0-1)  0.16968889 0.655183
3large (4+)   0.04923817 1.211587
z <- models[["nobuygrn"]][["coefficients"]]/models[["nobuygrn"]][["standard.errors"]]
p.23 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.23
              (Intercept)          x
1small (0-1) 9.367866e-05 0.01817262
3large (4+)  3.370126e-11 0.21407294
# Descirbe opinion about climate. not changing -> anthropogenic change
exp(coef(models$clmtcaus))
             (Intercept)         x
1small (0-1) 0.003864834 2.1348514
3large (4+)  0.407988583 0.6197506
z <- models[["clmtcaus"]][["coefficients"]]/models[["clmtcaus"]][["standard.errors"]]
p.24 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.24
              (Intercept)           x
1small (0-1) 4.681250e-07 0.010255176
3large (4+)  1.304969e-01 0.007826491
# scale of 0-10, how bad or good do  you think the impacts of climate change will be for the world as a whole. bad -> good
exp(coef(models$clmtwrld))
             (Intercept)         x
1small (0-1)  0.10029193 0.7752649
3large (4+)   0.05276856 1.1576234
z <- models[["clmtwrld"]][["coefficients"]]/models[["clmtwrld"]][["standard.errors"]]
p.25 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.25
             (Intercept)           x
1small (0-1)           0 0.002265044
3large (4+)            0 0.005181083
# scale of 0-10, how bad or good do  you think the impacts of climate change will be for America. bad -> good
exp(coef(models$clmtusa))
             (Intercept)         x
1small (0-1)  0.09871684 0.8019089
3large (4+)   0.05772047 1.1215764
z <- models[["clmtusa"]][["coefficients"]]/models[["clmtusa"]][["standard.errors"]]
p.26 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.26
             (Intercept)           x
1small (0-1)           0 0.005412873
3large (4+)            0 0.033419588
# How willing would you be to accept a reduction in the size of America's protected nature areas in order to open them up for economic development? willing -> unwilling
exp(coef(models$naturdev))
             (Intercept)         x
1small (0-1)  0.02563735 1.2160595
3large (4+)   0.36592962 0.6835448
z <- models[["naturdev"]][["coefficients"]]/models[["naturdev"]][["standard.errors"]]
p.27 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.27
              (Intercept)            x
1small (0-1) 5.082042e-07 0.2393184091
3large (4+)  2.149629e-02 0.0007705085
# Do you think air pollution caused by cars is..dangerous -> not dangerous
exp(coef(models$carsgen))
             (Intercept)         x
1small (0-1)   0.2321548 0.5412007
3large (4+)    0.0567729 1.1668891
z <- models[["carsgen"]][["coefficients"]]/models[["carsgen"]][["standard.errors"]]
p.12 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.12
              (Intercept)           x
1small (0-1) 6.938700e-04 0.001535031
3large (4+)  3.610889e-11 0.341130533
# Do you think a rise in the world's tempaerture caused by climate change is...dangerous -> not dangerous
exp(coef(models$tempgen1))
             (Intercept)         x
1small (0-1)  0.20690254 0.5004026
3large (4+)   0.04176211 1.3528088
z <- models[["tempgen1"]][["coefficients"]]/models[["tempgen1"]][["standard.errors"]]
p.20 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.20
              (Intercept)            x
1small (0-1) 6.943043e-06 0.0004453172
3large (4+)  0.000000e+00 0.0154479589
# Do you think air pollution caused by industry is...dangerous -> not dangerous
exp(coef(models$indusgen1))
             (Intercept)         x
1small (0-1)  0.24342775 0.4550324
3large (4+)   0.05089007 1.2608726
z <- models[["indusgen1"]][["coefficients"]]/models[["indusgen1"]][["standard.errors"]]
p.28 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.28
              (Intercept)            x
1small (0-1) 2.734341e-04 0.0003519105
3large (4+)  8.881784e-16 0.1387283444
# Do you think pesticides and chemicals used in farming are...dangerous -> not dangerous
exp(coef(models$chemgen1))
             (Intercept)         x
1small (0-1)  0.34036926 0.3979245
3large (4+)   0.04839996 1.2629903
z <- models[["chemgen1"]][["coefficients"]]/models[["chemgen1"]][["standard.errors"]]
p.29 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.29
              (Intercept)            x
1small (0-1) 4.301256e-03 9.964426e-06
3large (4+)  3.108624e-15 1.183911e-01
# Do you think pollution of America's rivers, lakes, and streams is...dangerous -> not dangerous
exp(coef(models$watergen1))
             (Intercept)         x
1small (0-1)  0.21442968 0.4658794
3large (4+)   0.03709612 1.4784154
z <- models[["watergen1"]][["coefficients"]]/models[["watergen1"]][["standard.errors"]]
p.30 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.30
              (Intercept)            x
1small (0-1) 5.805926e-05 0.0009058789
3large (4+)  0.000000e+00 0.0100163251
# Do you think nuclear power stations are...dangerous -> not dangerous
exp(coef(models$nukegen1))
             (Intercept)         x
1small (0-1)  0.06723631 0.9487429
3large (4+)   0.09474224 0.9544600
z <- models[["nukegen1"]][["coefficients"]]/models[["nukegen1"]][["standard.errors"]]
p.31 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.31
              (Intercept)         x
1small (0-1) 1.354894e-11 0.7032662
3large (4+)  3.326006e-12 0.6898439
# Are you a member of environmental group? yes/no
exp(coef(models$grngroup_rc))
             (Intercept)         x
1small (0-1)  0.05097450 2.2549028
3large (4+)   0.09295352 0.1236559
z <- models[["grngroup_rc"]][["coefficients"]]/models[["grngroup_rc"]][["standard.errors"]]
p.32 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.32
             (Intercept)          x
1small (0-1)           0 0.03118616
3large (4+)            0 0.03935413
# In the last five years, have you signed a petition about an environmental issue? yes/no
exp(coef(models$grnsign_rc))
             (Intercept)        x
1small (0-1)  0.03895408 2.744854
3large (4+)   0.09460774 0.589851
z <- models[["grnsign_rc"]][["coefficients"]]/models[["grnsign_rc"]][["standard.errors"]]
p.33 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.33
             (Intercept)           x
1small (0-1)           0 0.001231192
3large (4+)            0 0.110586689
# In the last five years, have you given money to an environmental group? yes/no
exp(coef(models$grnmoney_rc))
             (Intercept)         x
1small (0-1)  0.05350968 1.3221998
3large (4+)   0.09225254 0.6646599
z <- models[["grnmoney_rc"]][["coefficients"]]/models[["grnmoney_rc"]][["standard.errors"]]
p.34 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.34
             (Intercept)         x
1small (0-1)           0 0.3947654
3large (4+)            0 0.2041692
# In the last five years, have you taken part in a protest or demonstration about an environmental issue? yes/no
exp(coef(models$grndemo_rc))
             (Intercept)        x
1small (0-1)  0.05013915 4.432112
3large (4+)   0.08217270 1.352160
z <- models[["grndemo_rc"]][["coefficients"]]/models[["grndemo_rc"]][["standard.errors"]]
p.35 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.35
             (Intercept)            x
1small (0-1)           0 0.0004821612
3large (4+)            0 0.5792853223

Variables to explore:

ISSP Environmentalism variables start on p 486 of codebook

Variable Question Answer choices use?
grnprice how willing would you be to pay much higher prices in order to protect the environment 1-5 - very willing to very unwilling

44.1% RR

1,778 responses

grnsol how willing would you be to accept cuts in your standard of living in order to protect the env? 1-5 - very willing to very unwilling

44.1% RR

1,778 responses

grntaxes how willing would you be to pay much higher taxes in order to protect the env? 1-5 - very willing to very unwilling

44.0% RR

1,775 responses

grngroup Are you a member of any group that preserves or protects the environment yes/no

45.1%

1,820 responses

grnsign In the last 5 years, have you signed a petition about an environmental issue? yes/no

44.7%

1,802 responses

grnmoney In the last 5 years, have you given money to an environmental group? yes/no

45.0%

1,814 responses

grndemo In the last 5 years, have you taken part in a protest or demonstration about an environmental issue? yes/no

45.1%

1,817 responses

nobuygrn how often do you avoid buying certain products for env reasons? 1 Always , 2 Often, 3 Sometimes, 4 Never

45.2% RR

1,821 responses

recycle how often do you make a special effort to sort glass/cans/plastic/newspaper for recycling 1 Always , 2 Often, 3 Sometimes, 4 Never

42.2% RR

1,700 responses

scigrn modern science will solve our environmental problems with little change to our way of life 1 agree strongly, 5 disagree strongly

43.9%

1,772 responses

harmsgrn almost everything we do in life harms the environment 1 agree strongly, 5 disagree strongly

44.6%

1,798

ihlpgrn I do what is right for the env even when it costs more money or takes more time 1 agree strongly, 5 disagree strongly

44.2% RR

1,781 responses

grncon how concerned are you about env issues? 1 not at all concerned - 5 very concerned

45.2% responses

1,823 responses

grneffme env problems have a direct effect on my everyday life 1 agree strongly - 5 disagree strongly

43.8% RR

1,768 responses

grwtharm economic growth harms the environment 1 agree strongly - 5 disagree strongly

43.9%

1,771 responses

grwthelp

REVERSE

in order to protect the environment, America needs economic growth 1 agree strongly - 5 disagree strongly

43.5%

1,754 responses

grnexagg

REVERSE

many of the claims abt env threats are exaggerated 1 agree strongly - 5 disagree strongly

44.1% RR

1,777 responses

grnprog

REVERSE

people worry too much about human progress harming the environment 1 agree strongly - 5 disagree strongly

43.9%

1,772 responses

naturedev

REVERSE

how willing would you be to accept a reduction in the size of America’s protected nature areas in order to open them up for econ development? 1 very willing - 5 very unwilling

43.9%

1,771 responses

impgrn

REVERSE

There are more imp things to do in life than protect the environment 1 agree strongly - 5 disagree strongly

44.3% RR

1,788 responses

grnecon

REVERSE

We worry too much about the future of the environment and not enough about prices and jobs today 1 agree strongly - 5 disagree strongly

44.5% RR

1,795 responses

helpharm I find it hard to know whether the way I live is helpful or harmful to the environment 1 agree strongly - 5 disagree strongly

43.8% RR

1,761 responses

othssame There is no point in doing what I can for the env unless others do the same 1 agree strongly - 5 disagree strongly

44.4% RR

1,791 responses

toodifme It is too difficult for someone like me to do much about the env 1 agree strongly - 5 disagree strongly

44.2%

1,783 responses

tempgen1 Do you think that a rise in the world’s temperature change is… 1 extremely dangerous - 5 not at all dangerous

43.0% RR

1,734 responses

watergen1 Do you think that pollution of America’s rivers, lakes and streams is 1 extremely dangerous - 5 not at all dangerous

44.1% RR

1,780 responses

carsgen Do you think air pollution caused by cars is 1 extremely dangerous - 5 not at all dangerous

44.1%

1,778 responses

indusgen1 Do you think air pollution cause by industry is 1 extremely dangerous - 5 not at all dangerous

44.1%

1,779 responses

chemgen1 Do you think pesticides an chemicals used in farming are 1 extremely dangerous - 5 not at all dangerous

44.0%

1,773 responses

nukegen1 Do you think that nuclear power stations are 1 extremely dangerous - 5 not at all dangerous

43.2%

1,743 responses

CONFIDENCE QUESTIONS
confed Confidence in federal government 1 A great deal - 3 Hardly any

65.9% RR

2,658 responses

conlegis Confidence in congress 1 A great deal - 3 Hardly any

66.0% RR

2,661 responses

conjudge Confidence in Supreme Court 1 A great deal - 3 Hardly any

66.0% RR

2,662 responses

consci Confidence in scientific community 1 A great deal - 3 Hardly any

65.8% RR

2,654 responses

conmedic Confidence in medicine 1 A great deal - 3 Hardly any

66.0% RR

2,662 responses

chldidel ideal number of children for a family 1 - 7, 8 As many as you want

66.8% RR

2,693 responses

polviews where would you place yourself on 7 point scale 1 Extremely Liberal, 7 Extremely Conservative

98.3%

3,964 responses

end

https://stats.oarc.ucla.edu/r/dae/multinomial-logistic-regression/