GSS OLS regression with Environmental module questions

options(Ncores = 12)
library(tidyverse, quietly = T)
library(haven, quietly = T)
gss <- haven::read_dta(
  unz("2021_stata.zip",
      filename = "GSS2021.dta")
)
library(tidylog, quietly = T)

Attaching package: 'tidylog'
The following objects are masked from 'package:dplyr':

    add_count, add_tally, anti_join, count, distinct, distinct_all,
    distinct_at, distinct_if, filter, filter_all, filter_at, filter_if,
    full_join, group_by, group_by_all, group_by_at, group_by_if,
    inner_join, left_join, mutate, mutate_all, mutate_at, mutate_if,
    relocate, rename, rename_all, rename_at, rename_if, rename_with,
    right_join, sample_frac, sample_n, select, select_all, select_at,
    select_if, semi_join, slice, slice_head, slice_max, slice_min,
    slice_sample, slice_tail, summarise, summarise_all, summarise_at,
    summarise_if, summarize, summarize_all, summarize_at, summarize_if,
    tally, top_frac, top_n, transmute, transmute_all, transmute_at,
    transmute_if, ungroup
The following objects are masked from 'package:tidyr':

    drop_na, fill, gather, pivot_longer, pivot_wider, replace_na,
    spread, uncount
The following object is masked from 'package:stats':

    filter
gss_sub0 <- gss %>%
  haven::zap_labels() %>%
  mutate(
    chldidel_fctr1 = factor(case_when(chldidel %in% c(0:1) ~ "1small (0-1)",
                               chldidel %in% c(2:3) ~ "2normative (2-3)",
                               chldidel %in% c(4:7) ~ "3large (4+)",
                               chldidel %in% c(8)   ~ "4As many")),
    chldidel_fctr1 = relevel(chldidel_fctr1, ref = "2normative (2-3)"),
    
    chldidel_fctr2 = factor(case_when(chldidel %in% c(0:1) ~ "1small (0-1)",
                               chldidel %in% c(2:3) ~ "2normative (2-3)",
                               chldidel %in% c(4:7) ~ "3large (4+)")),
    chldidel_fctr2 = relevel(chldidel_fctr2, ref = "2normative (2-3)"),
    chldidel_rc = if_else(chldidel == 8, NA_real_, chldidel),
    grngroup_rc = if_else(grngroup == 2, 0, grngroup),
    grnsign_rc = if_else(grnsign == 2, 0, grnsign),
    grnmoney_rc = if_else(grnmoney == 2, 0, grnmoney),
    grndemo_rc = if_else(grndemo == 2, 0, grndemo),
    # Reverse code
    grwthelp_rc = 6-grwthelp,
    grnexagg_rc = 6-grnexagg,
    grnprog_rc = 6-grnprog,
    naturdev_rc = 6-naturdev,
    impgrn_rc = 6-impgrn,
    grnecon_rc = 6-grnecon, 
    age_cat = case_when(
      age %in% c(18:29) ~ "18-29",
      age %in% c(30:39) ~ "30-39",
      age %in% c(40:49) ~ "40-49",
      age %in% c(50:64) ~ "50-64",
      age %in% c(65:89) ~ "65-89"
    ),
    race1 = if_else(is.na(racecen1) == F, 1, 0),
    race2 = if_else(is.na(racecen2) == F, 1, 0),
    race3 = if_else(is.na(racecen3) == F, 1, 0),
    race_sum = race1 + race2 + race3,
    race_two = if_else(race_sum > 1, 1, 0),
    raceth = case_when(
      race_two == 0 & racecen1 == 1 ~ "NH White",
      race_two == 0 & racecen1 == 2 ~ "NH Black",
      race_two == 0 & racecen1 == 3 ~ "AIAN",
      race_two == 0 & racecen1 %in% c(4:10) ~ "Asian",
      race_two == 0 & racecen1 %in% c(11:14) ~ "NHPI",
      race_two == 0 & racecen1 == 15 ~ "Other",
      race_two == 0 & racecen1 == 16 ~ "Hispanic",
      race_two ==1 ~ "Two or More"
    ),
    # grneffme_rc = case_when(grneffme %in% c(1:2) ~ "1Agree",
    #                         grneffme %in% c(3)   ~ "2Neutral",
    #                         grneffme %in% c(3:4) ~ "3Disagree"),
    educ = case_when(degree %in% 0 ~ "1Less than HS",
                     degree %in% 1 ~ "2High School",
                     degree %in% 2 ~ "3Associate's",
                     degree %in% 3 ~ "4Bachelor's",
                     degree %in% 4 ~ "5Graduate"),
    sex_rc = if_else(sex == 1, "Male", "Female"),
    relitenv_rc = 5-relitenv
  ) %>%
  select(chldidel_fctr1, sex_rc, age_cat, educ, polviews, chldidel_fctr2, scigrn:recycle, impgrn:grnexagg, grncon, helpharm:nobuygrn,
         clmtcaus:watergen1, nukegen1, grngroup_rc:relitenv_rc)
mutate: converted 'educ' from double to character (43 fewer NA)
        new variable 'chldidel_fctr1' (factor) with 5 unique values and 33% NA
        new variable 'chldidel_fctr2' (factor) with 4 unique values and 54% NA
        new variable 'chldidel_rc' (double) with 9 unique values and 54% NA
        new variable 'grngroup_rc' (double) with 3 unique values and 55% NA
        new variable 'grnsign_rc' (double) with 3 unique values and 55% NA
        new variable 'grnmoney_rc' (double) with 3 unique values and 55% NA
        new variable 'grndemo_rc' (double) with 3 unique values and 55% NA
        new variable 'grwthelp_rc' (double) with 6 unique values and 56% NA
        new variable 'grnexagg_rc' (double) with 6 unique values and 56% NA
        new variable 'grnprog_rc' (double) with 6 unique values and 56% NA
        new variable 'naturdev_rc' (double) with 6 unique values and 56% NA
        new variable 'impgrn_rc' (double) with 6 unique values and 56% NA
        new variable 'grnecon_rc' (double) with 6 unique values and 55% NA
        new variable 'age_cat' (character) with 6 unique values and 8% NA
        new variable 'race1' (double) with 2 unique values and 0% NA
        new variable 'race2' (double) with 2 unique values and 0% NA
        new variable 'race3' (double) with 2 unique values and 0% NA
        new variable 'race_sum' (double) with 4 unique values and 0% NA
        new variable 'race_two' (double) with 2 unique values and 0% NA
        new variable 'raceth' (character) with 9 unique values and 1% NA
        new variable 'sex_rc' (character) with 3 unique values and 2% NA
        new variable 'relitenv_rc' (double) with 5 unique values and 37% NA
select: dropped 703 variables (year, id, wrkslf, wrkgovt, occ10, …)
# Filter data sets one that includes "as many children as you want and another that excludes that category
gss_sub1 <- gss_sub0 %>% 
  select(-chldidel_fctr2) %>%
  filter(complete.cases(.))
select: dropped one variable (chldidel_fctr2)
filter: removed 3,422 rows (85%), 610 rows remaining
gss_sub2 <- gss_sub0 %>% 
  select(-chldidel_fctr1) %>%
  filter(complete.cases(.))
select: dropped one variable (chldidel_fctr1)
filter: removed 3,594 rows (89%), 438 rows remaining
gss_pca1 <- gss_sub0 %>%
  select(scigrn, harmsgrn, grnprog_rc, grwthelp_rc, grwtharm, grnprice, grntaxes, grnsol, toodifme,
         ihlpgrn, carsgen, recycle, impgrn_rc, othssame, grnexagg_rc, grncon, helpharm, grneffme,
         tempgen1, nobuygrn, clmtcaus, clmtwrld, clmtusa, naturdev_rc, indusgen1, chemgen1, 
         watergen1, nukegen1, grngroup_rc, grnsign_rc, grnmoney_rc, grndemo_rc, grnecon_rc) %>%
  filter(complete.cases(.))
select: dropped 21 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,752 rows (68%), 1,280 rows remaining
gss_pca2 <- gss_sub0 %>%
  select(grwthelp_rc, grnexagg_rc, grnprog_rc, naturdev_rc, impgrn_rc, grnecon_rc)%>%
  filter(complete.cases(.))
select: dropped 48 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,382 rows (59%), 1,650 rows remaining
gss_pca3 <- gss_sub0 %>%
  select(scigrn, harmsgrn,  grwtharm, grnprice, grntaxes, grnsol, toodifme,
         ihlpgrn, carsgen, recycle, othssame, grncon, helpharm, grneffme,
         tempgen1, nobuygrn, clmtcaus, clmtwrld, clmtusa, indusgen1, chemgen1, 
         watergen1, nukegen1, grngroup_rc, grnsign_rc, grnmoney_rc, grndemo_rc) %>%
  filter(complete.cases(.))
select: dropped 27 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,710 rows (67%), 1,322 rows remaining
# agree/disagree
pca1 <- gss_sub0 %>%
  select(scigrn, grnecon_rc, harmsgrn, grnprog_rc, grwthelp_rc, grwtharm, toodifme, ihlpgrn, impgrn_rc, othssame, grnexagg_rc, helpharm, grneffme) %>%
  filter(complete.cases(.))
select: dropped 41 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,451 rows (61%), 1,581 rows remaining
# dangerous/not dangerous
pca2 <- gss_sub0 %>%
  select(carsgen, watergen1, tempgen1, nukegen1, indusgen1, chemgen1) %>%
  filter(complete.cases(.)) 
select: dropped 48 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,377 rows (59%), 1,655 rows remaining
# yes/no
pca3 <- gss_sub0 %>%
  select(grngroup_rc, grnsign_rc, grnmoney_rc, grndemo_rc) %>%
  filter(complete.cases(.))
select: dropped 50 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,251 rows (56%), 1,781 rows remaining
# willing/unwilling
pca4 <- gss_sub0 %>%
  select(grnprice, grntaxes, grnsol, naturdev_rc) %>%
  filter(complete.cases(.))
select: dropped 50 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,323 rows (58%), 1,709 rows remaining
# bad/good and not/very
pca5 <- gss_sub0 %>%
  select(clmtwrld, clmtusa, clmtcaus, grncon) %>%
  filter(complete.cases(.))
select: dropped 50 variables (chldidel_fctr1, sex_rc, age_cat, educ, polviews, …)
filter: removed 2,369 rows (59%), 1,663 rows remaining

Principal Component Analysis

Agree/Disagree response

pc1 <- prcomp(formula = ~., data = pca1, center = T, scale. = T)
summary(pc1)
Importance of components:
                          PC1    PC2     PC3    PC4     PC5     PC6     PC7
Standard deviation     2.0149 1.2525 1.08308 0.9594 0.90727 0.86517 0.83527
Proportion of Variance 0.3123 0.1207 0.09024 0.0708 0.06332 0.05758 0.05367
Cumulative Proportion  0.3123 0.4330 0.52320 0.5940 0.65732 0.71490 0.76857
                           PC8    PC9    PC10    PC11    PC12    PC13
Standard deviation     0.83080 0.7800 0.74101 0.71911 0.59202 0.54160
Proportion of Variance 0.05309 0.0468 0.04224 0.03978 0.02696 0.02256
Cumulative Proportion  0.82166 0.8685 0.91070 0.95048 0.97744 1.00000
biplot(pc1, scale = 0)

pc1_tibble <- pc1$rotation %>%
  as_tibble(rownames = "predictor")

pc1_tibble %>%
  select(predictor:PC4) %>%
  pivot_longer(PC1:PC4, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: dropped 9 variables (PC5, PC6, PC7, PC8, PC9, …)
pivot_longer: reorganized (PC1, PC2, PC3, PC4) into (component, value) [was 13x5, now 52x3]

Agree/Disagree response with loading values greater than .1

pca1b <- pca1 %>% select(grnecon_rc, harmsgrn, grnprog_rc, grwthelp_rc, ihlpgrn, impgrn_rc, grnexagg_rc, grneffme)
select: dropped 5 variables (scigrn, grwtharm, toodifme, othssame, helpharm)
pc1b <- prcomp(formula = ~., data = pca1b, center = T, scale. = T)
summary(pc1b)
Importance of components:
                          PC1    PC2    PC3     PC4    PC5     PC6     PC7
Standard deviation     1.8329 1.0311 0.9276 0.86871 0.8324 0.78176 0.59645
Proportion of Variance 0.4199 0.1329 0.1076 0.09433 0.0866 0.07639 0.04447
Cumulative Proportion  0.4199 0.5528 0.6604 0.75471 0.8413 0.91771 0.96218
                           PC8
Standard deviation     0.55007
Proportion of Variance 0.03782
Cumulative Proportion  1.00000
biplot(pc1b, scale = 0)

pc1b_tibble <- pc1b$rotation %>%
  as_tibble(rownames = "predictor")

pc1b_tibble %>%
  select(predictor:PC3) %>%
  pivot_longer(PC1:PC3, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: dropped 5 variables (PC4, PC5, PC6, PC7, PC8)
pivot_longer: reorganized (PC1, PC2, PC3) into (component, value) [was 8x4, now 24x3]

Dangerous/Not Dangerous response

pc2 <- prcomp(formula = ~., data = pca2, center = T, scale. = T)
summary(pc2)
Importance of components:
                          PC1    PC2    PC3     PC4     PC5     PC6
Standard deviation     1.8455 0.9063 0.8108 0.66938 0.61547 0.53709
Proportion of Variance 0.5677 0.1369 0.1096 0.07468 0.06313 0.04808
Cumulative Proportion  0.5677 0.7046 0.8141 0.88879 0.95192 1.00000
biplot(pc2, scale = 0)

pc2_tibble <- pc2$rotation %>%
  as_tibble(rownames = "predictor")

pc2_tibble %>%
  select(predictor:PC6) %>%
  pivot_longer(PC1:PC6, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: no changes
pivot_longer: reorganized (PC1, PC2, PC3, PC4, PC5, …) into (component, value) [was 6x7, now 36x3]

yes/no response

pc3 <- prcomp(formula = ~., data = pca3, center = T, scale. = T)
summary(pc3)
Importance of components:
                          PC1    PC2    PC3    PC4
Standard deviation     1.4123 0.9130 0.8196 0.7071
Proportion of Variance 0.4987 0.2084 0.1679 0.1250
Cumulative Proportion  0.4987 0.7071 0.8750 1.0000
biplot(pc3, scale = 0)

pc3_tibble <- pc3$rotation %>%
  as_tibble(rownames = "predictor")

pc3_tibble %>%
  select(predictor:PC4) %>%
  pivot_longer(PC1:PC4, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: no changes
pivot_longer: reorganized (PC1, PC2, PC3, PC4) into (component, value) [was 4x5, now 16x3]

willing/unwilling

pc4 <- prcomp(formula = ~., data = pca4, center = T, scale. = T)
summary(pc4)
Importance of components:
                         PC1    PC2     PC3     PC4
Standard deviation     1.591 0.9520 0.58109 0.47310
Proportion of Variance 0.633 0.2266 0.08442 0.05596
Cumulative Proportion  0.633 0.8596 0.94404 1.00000
biplot(pc4, scale = 0)

pc4_tibble <- pc4$rotation %>%
  as_tibble(rownames = "predictor")

pc4_tibble %>%
  select(predictor:PC4) %>%
  pivot_longer(PC1:PC4, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: no changes
pivot_longer: reorganized (PC1, PC2, PC3, PC4) into (component, value) [was 4x5, now 16x3]

bad/good and not/very

pc5 <- prcomp(formula = ~., data = pca5, center = T, scale. = T)
summary(pc5)
Importance of components:
                          PC1    PC2    PC3     PC4
Standard deviation     1.6521 0.8149 0.6734 0.39114
Proportion of Variance 0.6824 0.1660 0.1134 0.03825
Cumulative Proportion  0.6824 0.8484 0.9617 1.00000
biplot(pc5, scale = 0)

pc5_tibble <- pc5$rotation %>%
  as_tibble(rownames = "predictor")

pc5_tibble %>%
  select(predictor:PC4) %>%
  pivot_longer(PC1:PC4, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: no changes
pivot_longer: reorganized (PC1, PC2, PC3, PC4) into (component, value) [was 4x5, now 16x3]

All variables

env.pc1 <- prcomp(formula = ~., data = gss_pca1, center = T, scale. = T)
summary(env.pc1)
Importance of components:
                         PC1    PC2     PC3     PC4     PC5     PC6     PC7
Standard deviation     3.240 1.5024 1.29455 1.21955 1.14973 1.04155 1.00713
Proportion of Variance 0.318 0.0684 0.05078 0.04507 0.04006 0.03287 0.03074
Cumulative Proportion  0.318 0.3864 0.43723 0.48230 0.52235 0.55523 0.58596
                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
Standard deviation     0.98191 0.92850 0.90957 0.90294 0.85435 0.84637 0.81793
Proportion of Variance 0.02922 0.02612 0.02507 0.02471 0.02212 0.02171 0.02027
Cumulative Proportion  0.61518 0.64131 0.66638 0.69108 0.71320 0.73491 0.75518
                          PC15    PC16    PC17   PC18    PC19    PC20    PC21
Standard deviation     0.81575 0.79849 0.77510 0.7622 0.75259 0.73544 0.70985
Proportion of Variance 0.02016 0.01932 0.01821 0.0176 0.01716 0.01639 0.01527
Cumulative Proportion  0.77535 0.79467 0.81287 0.8305 0.84764 0.86403 0.87930
                          PC22    PC23    PC24    PC25    PC26    PC27    PC28
Standard deviation     0.69730 0.69426 0.66638 0.63955 0.63045 0.57173 0.55263
Proportion of Variance 0.01473 0.01461 0.01346 0.01239 0.01204 0.00991 0.00925
Cumulative Proportion  0.89403 0.90864 0.92210 0.93449 0.94654 0.95644 0.96570
                          PC29    PC30    PC31   PC32    PC33
Standard deviation     0.53129 0.51786 0.49345 0.4449 0.37446
Proportion of Variance 0.00855 0.00813 0.00738 0.0060 0.00425
Cumulative Proportion  0.97425 0.98238 0.98975 0.9958 1.00000
pca_tibble1 <- env.pc1$rotation %>%
  as_tibble(rownames = "predictor") %>%
  rename(PC01 = PC1, PC02 = PC2, PC03 = PC3, PC04 = PC4, PC05 = PC5, PC06 = PC6, PC07 = PC7, PC08 = PC8, PC09 = PC9)
rename: renamed 9 variables (PC01, PC02, PC03, PC04, PC05, …)
pca_tibble1
# A tibble: 33 × 34
   predictor      PC01    PC02    PC03    PC04     PC05     PC06    PC07    PC08
   <chr>         <dbl>   <dbl>   <dbl>   <dbl>    <dbl>    <dbl>   <dbl>   <dbl>
 1 scigrn      -0.104   0.0494 -0.194   0.0294 -0.365    0.146   -0.165   0.219 
 2 harmsgrn     0.136   0.268  -0.0999  0.0741  0.131   -0.249    0.130   0.131 
 3 grnprog_rc   0.215  -0.0706  0.203   0.0392  0.0233  -0.0284  -0.0688 -0.0160
 4 grwthelp_rc  0.116  -0.0297  0.186   0.0318  0.295   -0.437   -0.127  -0.383 
 5 grwtharm     0.0691  0.310  -0.212   0.0655  0.160   -0.491    0.0841  0.204 
 6 grnprice     0.221  -0.0344 -0.0474  0.237  -0.293   -0.0715  -0.129  -0.183 
 7 grntaxes     0.218  -0.0343 -0.0310  0.291  -0.285   -0.0432  -0.136  -0.189 
 8 grnsol       0.221  -0.0281 -0.0319  0.219  -0.211   -0.136   -0.108  -0.139 
 9 toodifme    -0.115   0.281  -0.0310  0.331   0.00334 -0.00117  0.203  -0.0898
10 ihlpgrn      0.141  -0.155  -0.226  -0.0865 -0.253   -0.223    0.165   0.0323
# … with 23 more rows, and 25 more variables: PC09 <dbl>, PC10 <dbl>,
#   PC11 <dbl>, PC12 <dbl>, PC13 <dbl>, PC14 <dbl>, PC15 <dbl>, PC16 <dbl>,
#   PC17 <dbl>, PC18 <dbl>, PC19 <dbl>, PC20 <dbl>, PC21 <dbl>, PC22 <dbl>,
#   PC23 <dbl>, PC24 <dbl>, PC25 <dbl>, PC26 <dbl>, PC27 <dbl>, PC28 <dbl>,
#   PC29 <dbl>, PC30 <dbl>, PC31 <dbl>, PC32 <dbl>, PC33 <dbl>
pca_tibble1 %>%
  select(predictor:PC01) %>%
  pivot_longer(PC01, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  #facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: dropped 32 variables (PC02, PC03, PC04, PC05, PC06, …)
pivot_longer: reorganized (PC01) into (component, value) [was 33x2, now 33x3]

biplot(env.pc1, scale = 0)

Reverse variables

env.pc2 <- prcomp(formula = ~., data = gss_pca2, center = T, scale. = T)
summary(env.pc2)
Importance of components:
                          PC1    PC2    PC3    PC4     PC5     PC6
Standard deviation     1.7708 0.9365 0.8311 0.7843 0.60340 0.56319
Proportion of Variance 0.5226 0.1462 0.1151 0.1025 0.06068 0.05286
Cumulative Proportion  0.5226 0.6688 0.7839 0.8864 0.94714 1.00000
pca_tibble2 <- env.pc2$rotation %>%
  as_tibble(rownames = "predictor") 
pca_tibble2
# A tibble: 6 × 7
  predictor     PC1     PC2     PC3    PC4      PC5     PC6
  <chr>       <dbl>   <dbl>   <dbl>  <dbl>    <dbl>   <dbl>
1 grwthelp_rc 0.283  0.796  -0.489   0.214 -0.00327 -0.0381
2 grnexagg_rc 0.472 -0.222  -0.102  -0.141 -0.616   -0.564 
3 grnprog_rc  0.462 -0.0713 -0.0173 -0.422  0.728   -0.272 
4 naturdev_rc 0.348  0.323   0.841   0.258 -0.0276  -0.0218
5 impgrn_rc   0.369 -0.451  -0.201   0.753  0.198    0.118 
6 grnecon_rc  0.477 -0.0702 -0.0503 -0.349 -0.226    0.769 
pca_tibble2 %>%
  select(predictor:PC6) %>%
  pivot_longer(PC1:PC6, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component, nrow = 1) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: no changes
pivot_longer: reorganized (PC1, PC2, PC3, PC4, PC5, …) into (component, value) [was 6x7, now 36x3]

biplot(env.pc2, scale = 0)

Regular variables

env.pc3 <- prcomp(formula = ~., data = gss_pca3, center = T, scale. = T)
summary(env.pc3)
Importance of components:
                          PC1     PC2    PC3     PC4     PC5    PC6     PC7
Standard deviation     2.8751 1.49077 1.2097 1.19190 1.11527 1.0103 0.97299
Proportion of Variance 0.3061 0.08231 0.0542 0.05262 0.04607 0.0378 0.03506
Cumulative Proportion  0.3061 0.38846 0.4427 0.49528 0.54135 0.5792 0.61421
                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
Standard deviation     0.92596 0.92439 0.86740 0.84830 0.84216 0.81208 0.79387
Proportion of Variance 0.03176 0.03165 0.02787 0.02665 0.02627 0.02442 0.02334
Cumulative Proportion  0.64597 0.67762 0.70548 0.73214 0.75840 0.78283 0.80617
                          PC15    PC16    PC17    PC18   PC19    PC20    PC21
Standard deviation     0.78794 0.76463 0.72820 0.71463 0.7010 0.68477 0.63711
Proportion of Variance 0.02299 0.02165 0.01964 0.01891 0.0182 0.01737 0.01503
Cumulative Proportion  0.82917 0.85082 0.87046 0.88937 0.9076 0.92494 0.93997
                          PC22    PC23    PC24    PC25    PC26    PC27
Standard deviation     0.63172 0.57779 0.52528 0.51568 0.45431 0.37362
Proportion of Variance 0.01478 0.01236 0.01022 0.00985 0.00764 0.00517
Cumulative Proportion  0.95475 0.96712 0.97734 0.98719 0.99483 1.00000
pca_tibble3 <- env.pc3$rotation %>%
  as_tibble(rownames = "predictor") %>%
  rename(PC01 = PC1, PC02 = PC2, PC03 = PC3, PC04 = PC4, PC05 = PC5, PC06 = PC6, PC07 = PC7, PC08 = PC8, PC09 = PC9) 
rename: renamed 9 variables (PC01, PC02, PC03, PC04, PC05, …)
pca_tibble3
# A tibble: 27 × 28
   predictor    PC01    PC02     PC03    PC04     PC05    PC06    PC07     PC08
   <chr>       <dbl>   <dbl>    <dbl>   <dbl>    <dbl>   <dbl>   <dbl>    <dbl>
 1 scigrn     0.112  -0.0269  0.157   -0.0401  0.413   -0.189   0.102   0.509  
 2 harmsgrn  -0.157  -0.261   0.161   -0.0205 -0.0948   0.335   0.0862 -0.241  
 3 grwtharm  -0.0848 -0.290   0.294   -0.127   0.00729  0.505   0.187  -0.104  
 4 grnprice  -0.250   0.0597  0.0976   0.283   0.288   -0.0929  0.0885 -0.131  
 5 grntaxes  -0.245   0.0595  0.121    0.331   0.273   -0.120   0.0884 -0.137  
 6 grnsol    -0.250   0.0559  0.0722   0.259   0.204   -0.0225  0.124  -0.160  
 7 toodifme   0.125  -0.286   0.286    0.206   0.0126   0.0878 -0.333   0.0907 
 8 ihlpgrn   -0.165   0.184   0.0252  -0.113   0.325    0.267   0.0175  0.119  
 9 carsgen   -0.238  -0.215  -0.00592 -0.0746  0.0827  -0.195  -0.103  -0.00779
10 recycle   -0.126   0.248  -0.0780  -0.131   0.164    0.326  -0.483   0.210  
# … with 17 more rows, and 19 more variables: PC09 <dbl>, PC10 <dbl>,
#   PC11 <dbl>, PC12 <dbl>, PC13 <dbl>, PC14 <dbl>, PC15 <dbl>, PC16 <dbl>,
#   PC17 <dbl>, PC18 <dbl>, PC19 <dbl>, PC20 <dbl>, PC21 <dbl>, PC22 <dbl>,
#   PC23 <dbl>, PC24 <dbl>, PC25 <dbl>, PC26 <dbl>, PC27 <dbl>
pca_tibble3 %>%
  select(predictor:PC01) %>%
  pivot_longer(PC01, names_to = "component", values_to = "value") %>%
  ggplot(aes(x = value, y = predictor)) +
  geom_col(fill = "darkgreen", color = "darkgreen", alpha = 0.5) +
  facet_wrap(~component) +
  labs(y = NULL, x = "Value") +
  theme_minimal()
select: dropped 26 variables (PC02, PC03, PC04, PC05, PC06, …)
pivot_longer: reorganized (PC01) into (component, value) [was 27x2, now 27x3]

biplot(env.pc3, scale = 0)

Multinomial Regression

# Load packages for OLS regressgion
require(foreign)
require(nnet)
require(ggplot2)
require(reshape2)
# create function to use in `lapply`
ols <- function(x){
  test <- multinom(chldidel_fctr1 ~ x + sex_rc + age_cat + educ + raceth, data = gss_sub1)
  summary(test)
}
# Run lapply to run models individual models for each column
models <- lapply(gss_sub1[,-c(1:5)], ols)

exp(coef) and P scores for all models

scigrn

# modern science will solve our environmental problems with little change to our way of life. agree -> disagree
exp1 <- as_tibble(exp(coef(models$scigrn)), rownames = "famsize")
z <- models[["scigrn"]][["coefficients"]]/models[["scigrn"]][["standard.errors"]]
p.1 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.1 <- as_tibble(p.1, rownames = "famsize")

head(exp1)
# A tibble: 3 × 18
  famsize      (Interce…¹     x sex_r…² age_c…³ age_c…⁴ age_c…⁵ age_c…⁶ educ2H…⁷
  <chr>             <dbl> <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
1 1small (0-1)   2.77e-33 1.52    0.638   0.264   0.158   0.264   0.207 7.97e+26
2 3large (4+)    1.75e- 8 0.609   0.607   1.77    0.677   1.46    1.09  3.63e- 1
3 4As many       1.62e+ 0 1.18    0.583   0.438   0.728   0.694   0.358 1.23e+ 0
# … with 9 more variables: `educ3Associate's` <dbl>, `educ4Bachelor's` <dbl>,
#   educ5Graduate <dbl>, racethAsian <dbl>, racethHispanic <dbl>,
#   `racethNH Black` <dbl>, `racethNH White` <dbl>, racethOther <dbl>,
#   `racethTwo or More` <dbl>, and abbreviated variable names ¹​`(Intercept)`,
#   ²​sex_rcMale, ³​`age_cat30-39`, ⁴​`age_cat40-49`, ⁵​`age_cat50-64`,
#   ⁶​`age_cat65-89`, ⁷​`educ2High School`
head(p.1)
# A tibble: 3 × 18
  famsize (Inte…¹      x sex_r…² age_c…³ age_c…⁴ age_c…⁵ age_c…⁶ educ2…⁷ educ3…⁸
  <chr>     <dbl>  <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
1 1small…   0     0.0580 0.259    0.0396  0.0130  0.0259 0.00861   0       0    
2 3large…   0     0.0138 0.250    0.497   0.684   0.658  0.922     0.178   0.348
3 4As ma…   0.733 0.0874 0.00518  0.0215  0.356   0.272  0.00334   0.691   0.795
# … with 8 more variables: `educ4Bachelor's` <dbl>, educ5Graduate <dbl>,
#   racethAsian <dbl>, racethHispanic <dbl>, `racethNH Black` <dbl>,
#   `racethNH White` <dbl>, racethOther <dbl>, `racethTwo or More` <dbl>, and
#   abbreviated variable names ¹​`(Intercept)`, ²​sex_rcMale, ³​`age_cat30-39`,
#   ⁴​`age_cat40-49`, ⁵​`age_cat50-64`, ⁶​`age_cat65-89`, ⁷​`educ2High School`,
#   ⁸​`educ3Associate's`

grnecon

# REVERSE we worry to much about the future of the environment and not enough about prices and jobs today. agree -> disagree
exp(coef(models$grnecon_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.491589e-16 0.5948583  0.6562518    0.2912596    0.1889686
3large (4+)  7.035951e-06 1.1971272  0.5842487    1.7774705    0.6360228
4As many     3.273957e+00 0.9963513  0.5766537    0.4405245    0.7465863
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3484796    0.2657639     7.674323e+09     6.051445e+09
3large (4+)     1.1709038    0.8956783     4.144858e-01     3.979778e-01
4As many        0.7194849    0.3809765     1.192297e+00     8.619095e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    3.846515e+09  8.429273e+09 3.175355e-10   1.180305e-08
3large (4+)     3.105807e-01  2.922622e-01 1.655929e+04   1.615044e+04
4As many        1.688739e+00  2.259032e+00 1.272849e-01   3.031569e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   2.200841e+06   8.946366e+05 3.115036e+06      1.023093e-09
3large (4+)    6.234437e+04   1.488389e+04 2.765192e-08      4.959772e+04
4As many       4.358709e-01   1.880674e-01 4.790002e-01      1.333439e-01
z <- models[["grnecon_rc"]][["coefficients"]]/models[["grnecon_rc"]][["standard.errors"]]
p.2 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.2
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.02234298 0.292334508   0.05634589   0.02557649
3large (4+)    0.0000000 0.34943960 0.212378654   0.49124977   0.63492091
4As many       0.3907973 0.96792613 0.004277451   0.02229039   0.39593213
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.08121453  0.026256756        0.0000000         0.000000
3large (4+)    0.85268518  0.900182622        0.2374983         0.310072
4As many       0.32641706  0.005543457        0.7364370         0.807086
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1424048     0.1525605   0.0000000      0.0000000
4As many           0.3181267     0.1270637   0.1203901      0.3757685
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5203389      0.1810991   0.6222668         0.1410117

harmsgrn

# Almost everything we do in modern life harms the environment. agree -> disagree
exp(coef(models$harmsgrn))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 4.224040e-16 0.4958716  0.7404823    0.2552821    0.1451424
3large (4+)  7.628734e-06 1.0490816  0.5895079    1.7206618    0.6426233
4As many     2.471364e+00 1.1199861  0.5538230    0.4361625    0.7506481
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3362289    0.2724250     9.293000e+09     7.400234e+09
3large (4+)     1.2447807    0.8916691     4.112434e-01     3.833639e-01
4As many        0.6931922    0.3677472     1.230801e+00     8.825464e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    5.667285e+09  1.504086e+10 3.414784e-10   1.363001e-08
3large (4+)     2.856550e-01  2.662325e-01 2.116025e+04   2.317890e+04
4As many        1.752544e+00  2.309196e+00 1.195102e-01   3.071925e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   7.324008e+05   4.248471e+05 2.439336e+06      3.314879e-09
3large (4+)    8.599926e+04   1.926458e+04 6.861324e-08      6.554365e+04
4As many       4.334278e-01   1.832567e-01 4.577131e-01      1.402864e-01
z <- models[["harmsgrn"]][["coefficients"]]/models[["harmsgrn"]][["standard.errors"]]
p.3 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.3
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.003773592 0.457307711   0.03576658   0.01143194
3large (4+)    0.0000000 0.829506401 0.221633811   0.51617890   0.64236706
4As many       0.5164419 0.265663341 0.002560613   0.02091909   0.40417237
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.06928048  0.030678520        0.0000000        0.0000000
3large (4+)    0.79634750  0.896649811        0.2358817        0.2948276
4As many       0.27189189  0.004160688        0.6912645        0.8373547
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1153809     0.1201452   0.0000000      0.0000000
4As many           0.2836594     0.1142309   0.1099258      0.3813138
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000          0.000000
3large (4+)       0.0000000      0.0000000   0.0000000          0.000000
4As many          0.5174077      0.1747701   0.6016847          0.151815

grnprog

# REVERSE People worry too much about human progress harming the environment. agree -> disagree
exp(coef(models$grnprog_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 2.625705e-16 0.5656247  0.6753503    0.2667675    0.1721890
3large (4+)  8.340616e-06 1.4414554  0.5727594    1.7879660    0.6254454
4As many     4.474112e+00 0.8682339  0.5856633    0.4418684    0.7635917
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3328511    0.2678516     3.851090e+09     2.785591e+09
3large (4+)     1.0888963    0.8100699     4.535007e-01     4.694247e-01
4As many        0.7639062    0.3991875     1.112189e+00     7.906371e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.983871e+09  4.401486e+09 2.817443e-10   7.572545e-09
3large (4+)     3.496691e-01  3.362559e-01 7.917627e+03   6.209392e+03
4As many        1.532035e+00  1.994473e+00 1.347146e-01   3.292513e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   2.871851e+06   1.180824e+06 7.814448e+06      1.165909e-09
3large (4+)    2.852809e+04   7.198706e+03 4.730082e-09      2.494040e+04
4As many       4.771210e-01   1.982453e-01 5.565094e-01      1.355278e-01
z <- models[["grnprog_rc"]][["coefficients"]]/models[["grnprog_rc"]][["standard.errors"]]
p.4 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.4
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.01375229 0.326941208   0.04088438   0.01856842
3large (4+)    0.0000000 0.06666746 0.198996673   0.49077047   0.62404457
4As many       0.2808713 0.14193269 0.005591777   0.02288158   0.43332873
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.06749978  0.027027612        0.0000000        0.0000000
3large (4+)    0.92052190  0.812375867        0.2989993        0.4118143
4As many       0.42154368  0.008539344        0.8389518        0.7004484
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000            NaN
3large (4+)        0.1905472     0.2107650   0.0000000      0.0000000
4As many           0.4169451     0.1968931   0.1311844      0.4101323
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000               NaN
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5670242      0.1955704   0.6959536         0.1447649

grwthelp

# REVERSE In order to protect the environment, America needs economic growth. agree -> disagree
exp(coef(models$grwthelp_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.260053e-16 0.5430607  0.6546013    0.2695919    0.1573390
3large (4+)  4.617553e-06 1.2911175  0.5887726    1.8049167    0.6287874
4As many     3.835126e+00 0.9380533  0.5781740    0.4399851    0.7455844
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3006237    0.2506993     7.798223e+10     5.764105e+10
3large (4+)     1.2679475    0.8791773     4.145603e-01     4.246464e-01
4As many        0.7234713    0.3823197     1.187064e+00     8.604526e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    4.187493e+10  1.016213e+11 5.009415e-08   2.380109e-07
3large (4+)     2.965433e-01  2.753386e-01 1.649606e+04   1.593059e+04
4As many        1.677394e+00  2.246850e+00 1.324751e-01   3.170769e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   5.377014e+05   2.238573e+05 1.782500e+06      2.481897e-08
3large (4+)    6.444831e+04   1.483272e+04 5.615522e-09      5.124543e+04
4As many       4.608156e-01   1.951065e-01 5.179692e-01      1.378266e-01
z <- models[["grwthelp_rc"]][["coefficients"]]/models[["grwthelp_rc"]][["standard.errors"]]
p.5 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.5
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.002465514 0.294817673   0.04404731   0.01515829
3large (4+)    0.0000000 0.263710489 0.217901923   0.48014585   0.62800992
4As many       0.3349885 0.520038256 0.004465384   0.02215426   0.39233388
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.04595075  0.020854130        0.0000000        0.0000000
3large (4+)    0.77841849  0.883469605        0.2381980        0.3472772
4As many       0.32941929  0.005652598        0.7430904        0.8051639
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1243211     0.1295824   0.0000000      0.0000000
4As many           0.3233121     0.1270691   0.1271529      0.3933988
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5480847      0.1900609   0.6602535         0.1469857

grwtharm

# Economic growth always harms the environment. agree -> disagree
exp(coef(models$grwtharm))
              (Intercept)        x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 9.726542e-24 0.502191  0.7859061    0.2449861    0.1406062
3large (4+)  4.759225e-10 1.037837  0.5887246    1.7170332    0.6358520
4As many     1.396691e+00 1.279725  0.5365683    0.4375902    0.7614996
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2710405    0.2578247     1.389103e+19     9.783188e+18
3large (4+)     1.2525300    0.8948375     4.028091e-01     3.773187e-01
4As many        0.7288356    0.3702229     1.125333e+00     8.095382e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    9.765406e+18  2.599549e+19 9.029557e-10   1.591299e-11
3large (4+)     2.768891e-01  2.580466e-01 3.558215e+08   3.852209e+08
4As many        1.520387e+00  1.973205e+00 1.461497e-01   3.728138e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   4.314298e+04   2.143375e+04 1.842519e+05      1.479840e-10
3large (4+)    1.408466e+09   3.161975e+08 8.074955e-13      1.046388e+09
4As many       4.696869e-01   2.059133e-01 4.612188e-01      1.541071e-01
z <- models[["grwtharm"]][["coefficients"]]/models[["grwtharm"]][["standard.errors"]]
p.6 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.6
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.001867958 0.559750418   0.03444099   0.01048934
3large (4+)    0.0000000 0.885927555 0.228386206   0.51571033   0.63432431
4As many       0.8169575 0.046253156 0.001521546   0.02169676   0.42886905
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03093024  0.025190065        0.0000000        0.0000000
3large (4+)    0.78966357  0.899171494        0.2231257        0.2865453
4As many       0.34170243  0.004331753        0.8217800        0.7295133
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000            NaN
3large (4+)        0.1065622     0.1156287   0.0000000      0.0000000
4As many           0.4258146     0.2037289   0.1507265      0.4684369
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000               NaN
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5612936      0.2097894   0.6069193         0.1751443

grnprice

# How willing would you be to pay much higher prices in order to protect the environment. willing -> unwilling
exp(coef(models$grnprice))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 2.887470e-16 0.5407042  0.6468332    0.3537575    0.2152638
3large (4+)  3.173077e-06 1.3842872  0.5612005    1.4520790    0.5440858
4As many     2.754319e+00 1.0670383  0.5699756    0.4305091    0.7302496
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3963213    0.2932477     5.130832e+09     4.124819e+09
3large (4+)     1.0270290    0.7945078     4.361526e-01     3.787007e-01
4As many        0.6933540    0.3744162     1.214293e+00     8.744405e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    2.765148e+09  5.632775e+09 8.543875e-10   1.068610e-08
3large (4+)     3.183697e-01  3.337756e-01 2.617222e+04   2.708651e+04
4As many        1.751288e+00  2.393420e+00 1.266338e-01   3.052273e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.497553e+06   9.039968e+05 4.861728e+06      4.479345e-09
3large (4+)    1.138910e+05   2.194574e+04 1.303426e-08      8.797332e+04
4As many       4.388780e-01   1.852636e-01 4.632708e-01      1.357960e-01
z <- models[["grnprice"]][["coefficients"]]/models[["grnprice"]][["standard.errors"]]
p.7 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.7
             (Intercept)           x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.008449605 0.27934668   0.11168806   0.04018656
3large (4+)    0.0000000 0.093547912 0.18281993   0.65742353   0.52625218
4As many       0.4656066 0.476670460 0.00362228   0.01945061   0.36330564
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1267964  0.041480513        0.0000000        0.0000000
3large (4+)     0.9751321  0.794199773        0.2705462        0.2914448
4As many        0.2764421  0.004809313        0.7103823        0.8254080
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1520277     0.2069613   0.0000000      0.0000000
4As many           0.2853986     0.1029830   0.1190394      0.3780611
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000               NaN
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5230863      0.1767995   0.6065974         0.1443935

grntaxes

# How willing would you be to pay much higher taxes in order to protect the environment. willing -> unwilling
exp(coef(models$grntaxes))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 6.300087e-16 0.5317865  0.6261260    0.3910603    0.2511030
3large (4+)  4.696530e-06 1.1184620  0.5956208    1.6387845    0.6009173
4As many     2.887507e+00 1.0396281  0.5735025    0.4333965    0.7292648
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.4507884    0.3163289     3.174699e+10     2.505312e+10
3large (4+)     1.1849018    0.8769345     4.115715e-01     3.678930e-01
4As many        0.7020218    0.3771067     1.197380e+00     8.630363e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.645222e+10  3.110215e+10 5.651585e-09   1.996443e-08
3large (4+)     2.898040e-01  2.850862e-01 2.902105e+04   3.021904e+04
4As many        1.716251e+00  2.339240e+00 1.286227e-01   3.055778e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.389522e+05   7.428631e+04 4.217071e+05      5.521375e-09
3large (4+)    1.182415e+05   2.575735e+04 9.296236e-08      8.819903e+04
4As many       4.414187e-01   1.892605e-01 4.810363e-01      1.354329e-01
z <- models[["grntaxes"]][["coefficients"]]/models[["grntaxes"]][["standard.errors"]]
p.8 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.8
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.002181869 0.245327863   0.15471591   0.06687189
3large (4+)    0.0000000 0.526025125 0.227357627   0.55598061   0.59599561
4As many       0.4457583 0.633498484 0.003937464   0.02074831   0.36495154
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1963216  0.058852556        0.0000000        0.0000000
3large (4+)     0.8420981  0.881272273        0.2348409        0.2750960
4As many        0.2947139  0.005138963        0.7303046        0.8087654
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1182623     0.1452775   0.0000000      0.0000000
4As many           0.3018952     0.1113681   0.1220189      0.3787447
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000       0.000000   0.0000000         0.0000000
3large (4+)       0.0000000       0.000000   0.0000000         0.0000000
4As many          0.5263367       0.182519   0.6242659         0.1440661

grnsol

# How willing would you be to accep cuts in your standard of living in order to protect the environment. willing -> unwilling
exp(coef(models$grnsol))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.388493e-14 0.4853862  0.6909726    0.3476697    0.2063083
3large (4+)  8.321658e-06 0.9918854  0.5979612    1.7504796    0.6461652
4As many     2.527637e+00 1.1163263  0.5674421    0.4158910    0.7115107
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.4045772    0.3069063     1.161820e+09     9.859462e+08
3large (4+)     1.2769135    0.9141900     4.029744e-01     3.766043e-01
4As many        0.6704131    0.3598944     1.253315e+00     8.906916e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    5.989881e+08  1.249362e+09 1.624102e-08   4.009124e-08
3large (4+)     2.795249e-01  2.611416e-01 2.281828e+04   2.437918e+04
4As many        1.835487e+00  2.530180e+00 1.200532e-01   2.874449e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   2.171594e+05   1.144063e+05 4.726280e+05      1.081918e-08
3large (4+)    9.104730e+04   2.045271e+04 8.544498e-08      6.688650e+04
4As many       4.035294e-01   1.721484e-01 4.357072e-01      1.293155e-01
z <- models[["grnsol"]][["coefficients"]]/models[["grnsol"]][["standard.errors"]]
p.9 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.9
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.000997765 0.362733423    0.1062395   0.03590102
3large (4+)    0.0000000 0.966034374 0.231450630    0.5045800   0.64733074
4As many       0.5030664 0.206412220 0.003374246    0.0154376   0.32554621
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1360302  0.050785187        0.0000000        0.0000000
3large (4+)     0.7744040  0.919026879        0.2267509        0.2858215
4As many        0.2350685  0.003563561        0.6666165        0.8491839
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000    0.00000000   0.0000000      0.0000000
3large (4+)        0.1119736    0.12359776   0.0000000      0.0000000
4As many           0.2488183    0.08382715   0.1101917      0.3548866
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.4821441      0.1594025   0.5786575         0.1349863

toodifme

# It is just too difficult for someone like me to do much about the environment. agree -> disagree
exp(coef(models$toodifme))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 2.138204e-24 0.9896217  0.6233458    0.2860510    0.1660375
3large (4+)  1.998934e-08 0.7962908  0.5783750    1.7362969    0.6338373
4As many     2.313554e+00 1.1058773  0.5874694    0.4415301    0.7612545
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2878339    0.2421976     7.421392e+18     5.493148e+18
3large (4+)     1.2366324    0.9082580     4.639067e-01     4.403905e-01
4As many        0.7318901    0.3806004     1.143789e+00     8.299185e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    4.533738e+18  1.079146e+19 5.357204e-08   2.630118e-09
3large (4+)     3.370833e-01  3.203364e-01 1.652679e+07   1.736594e+07
4As many        1.594389e+00  2.105670e+00 1.329581e-01   3.109094e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   4.998611e+04   2.361047e+04 1.089564e+05      4.824907e-09
3large (4+)    7.107447e+07   1.566020e+07 1.104934e-12      5.518243e+07
4As many       4.441088e-01   1.911835e-01 4.854314e-01      1.310915e-01
z <- models[["toodifme"]][["coefficients"]]/models[["toodifme"]][["standard.errors"]]
p.10 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.10
             (Intercept)         x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.9577443 0.237651303   0.05111378   0.01588157
3large (4+)    0.0000000 0.2531602 0.204242746   0.50853466   0.63263865
4As many       0.5524968 0.3022130 0.005998815   0.02279264   0.42769749
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03557142  0.016382781         0.000000        0.0000000
3large (4+)    0.80128377  0.912661967         0.309801        0.3730052
4As many       0.34782396  0.005438639         0.798209        0.7604585
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000            NaN
3large (4+)        0.1776844     0.1920794   0.0000000      0.0000000
4As many           0.3762306     0.1645729   0.1287364      0.3864947
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5297546      0.1857789   0.6292102         0.1379987

ihlpgrn

# I do what is right for the environment even when it costs more moeny or takes more time. agree -> disagree
exp(coef(models$ihlpgrn))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.011300e-15 0.4865674  0.6922365    0.2577254    0.1618602
3large (4+)  4.320108e-06 1.1315018  0.5883659    1.6860045    0.6367958
4As many     6.774914e+00 0.7887611  0.5918545    0.4203475    0.7290921
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2624890    0.1926770     7.022000e+09     5.447446e+09
3large (4+)     1.2477445    0.9154650     4.220865e-01     3.748192e-01
4As many        0.6848065    0.3463746     1.147579e+00     8.256333e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    4.076348e+09  9.029146e+09 6.237388e-10   3.458703e-09
3large (4+)     2.951977e-01  2.766952e-01 3.112719e+04   3.450472e+04
4As many        1.586244e+00  2.077454e+00 1.179139e-01   2.764974e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   5.524423e+05   2.902235e+05 2.177897e+06      8.866057e-10
3large (4+)    1.253099e+05   2.764429e+04 3.524692e-08      9.657787e+04
4As many       4.045233e-01   1.746663e-01 5.675338e-01      1.083866e-01
z <- models[["ihlpgrn"]][["coefficients"]]/models[["ihlpgrn"]][["standard.errors"]]
p.11 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.11
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.01184123 0.361157714   0.03794503   0.01447337
3large (4+)    0.0000000 0.64325894 0.216985309   0.52959115   0.63520382
4As many       0.1847437 0.06481715 0.006742484   0.01630933   0.35904309
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.0260111  0.006682843        0.0000000        0.0000000
3large (4+)     0.7933374  0.919912065        0.2478010        0.2842872
4As many        0.2562806  0.002588634        0.7928595        0.7535594
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1247859     0.1339306   0.0000000      0.0000000
4As many           0.3792521     0.1698787   0.1109172      0.3452368
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.4881877      0.1676078   0.7088772         0.1091262

recycle

# How often do you make a special effort to sort glass/cans/plastic/newspapers for recycling? always - never
exp(coef(models$recycle))
               (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 7.428482e-150 0.8863831  0.6373724    0.2845283    0.1625301
3large (4+)   1.156867e-64 1.2600994  0.5675932    1.6794423    0.7170766
4As many      3.785652e+00 0.9351460  0.5815920    0.4397709    0.7301753
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2836087    0.2315784    2.551642e+144    1.861463e+144
3large (4+)     1.3006966    1.0137653     4.258416e-01     4.314076e-01
4As many        0.7124836    0.3695855     1.189397e+00     8.424895e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)   1.502433e+144 3.499902e+144 2.925491e-14   2.280096e-26
3large (4+)     3.160552e-01  3.117934e-01 9.659826e+62   1.043665e+63
4As many        1.653051e+00  2.191501e+00 1.250184e-01   2.957041e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   5.274779e+04   2.399104e+04 1.061820e+05      7.923279e-24
3large (4+)    3.198210e+63   8.493846e+62 2.510520e-79      2.664080e+63
4As many       4.419159e-01   1.846178e-01 4.734818e-01      1.329777e-01
z <- models[["recycle"]][["coefficients"]]/models[["recycle"]][["standard.errors"]]
p.13 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.13
             (Intercept)         x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)    0.000000 0.5744233 0.258485124   0.05032684   0.01438545
3large (4+)     0.000000 0.2317694 0.189386592   0.53382935   0.72763428
4As many        0.340067 0.5062859 0.005047102   0.02201506   0.36259700
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03346696   0.01426948        0.0000000        0.0000000
3large (4+)    0.75566288   0.98763683        0.2533166        0.3606156
4As many       0.30737961   0.00451484        0.7400918        0.7788005
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000            NaN
3large (4+)        0.1472246     0.1753501   0.0000000      0.0000000
4As many           0.3375982     0.1406989   0.1181344      0.3671607
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000         NaN         0.0000000
4As many          0.5281236      0.1776355   0.6179472         0.1414823

impgrn

# REVERSE There are more important things to do in life than protect the environment. agree -> disagree
exp(coef(models$impgrn_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 8.868458e-16 0.6130098  0.6918026    0.2573811    0.1498797
3large (4+)  4.032036e-06 1.6135147  0.5151690    1.8854387    0.6857552
4As many     2.013531e+00 1.2089112  0.5420296    0.4523224    0.7671202
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2677717    0.1948480     4.265411e+09     3.158586e+09
3large (4+)     1.3825902    1.0819834     4.088394e-01     3.844160e-01
4As many        0.7361105    0.4090893     1.204930e+00     8.710048e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    2.636186e+09  6.042445e+09 1.550190e-09   1.204615e-08
3large (4+)     2.611030e-01  2.731759e-01 1.054295e+04   1.497385e+04
4As many        1.651542e+00  2.311171e+00 1.177400e-01   3.294556e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   6.128518e+05   2.948229e+05 1.134999e+06      1.872751e-09
3large (4+)    5.037287e+04   1.188678e+04 5.945196e-08      5.495658e+04
4As many       4.293008e-01   1.898056e-01 4.975351e-01      1.495284e-01
z <- models[["impgrn_rc"]][["coefficients"]]/models[["impgrn_rc"]][["standard.errors"]]
p.14 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.14
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.04228584 0.361168796   0.03676296   0.01170959
3large (4+)    0.0000000 0.02955031 0.130585364   0.45199743   0.69446702
4As many       0.6194456 0.06629390 0.001815176   0.02753579   0.44248428
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.02805451  0.007013433        0.0000000        0.0000000
3large (4+)    0.70389032  0.929391409        0.2384882        0.3017984
4As many       0.35808624  0.010614722        0.7222072        0.8208749
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)      0.00000000     0.0000000         NaN      0.0000000
3large (4+)       0.09384822     0.1330454   0.0000000      0.0000000
4As many          0.33877769     0.1152089   0.1112334      0.4151598
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5175177      0.1889637   0.6438723         0.1698127

othssame

# There is no point in doing what I can for the environment unless others do the same. agree -> disagree
exp(coef(models$othssame))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 4.183772e-25 1.1620253  0.6483300    0.2771071    0.1706869
3large (4+)  4.162467e-09 0.8494354  0.5815751    1.8514802    0.6775857
4As many     3.544290e+00 0.9691562  0.5713534    0.4470347    0.7527154
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2895453    0.2322999     2.461445e+19     1.809991e+19
3large (4+)     1.3095198    0.9983148     4.332582e-01     4.145347e-01
4As many        0.7227161    0.3871664     1.204922e+00     8.779155e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.472779e+19  3.401537e+19 1.932918e-07   2.615000e-09
3large (4+)     3.055229e-01  2.949652e-01 6.732557e+07   7.521832e+07
4As many        1.716954e+00  2.312128e+00 1.264162e-01   3.046991e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   4.178461e+04   2.008285e+04 8.539415e+04      1.838411e-09
3large (4+)    2.819795e+08   6.397046e+07 2.585203e-12      2.119959e+08
4As many       4.386046e-01   1.895180e-01 4.826186e-01      1.339633e-01
z <- models[["othssame"]][["coefficients"]]/models[["othssame"]][["standard.errors"]]
p.15 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.15
             (Intercept)         x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.4731077 0.278291406   0.04678834   0.01691663
3large (4+)    0.0000000 0.4066498 0.208272210   0.46107753   0.68332832
4As many       0.3655979 0.7435716 0.003878722   0.02559500   0.40885746
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03664557  0.014181413        0.0000000        0.0000000
3large (4+)    0.74980142  0.998477568        0.2639935        0.3381202
4As many       0.32773683  0.006689248        0.7211797        0.8307652
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1361681     0.1566048   0.0000000      0.0000000
4As many           0.3014430     0.1149062   0.1187182      0.3772595
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5226816      0.1826125   0.6255039         0.1415468

grnexagg

# REVERSE Many of the claims about environmental threats are exaggerated. agree -> disagree
exp(coef(models$grnexagg_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 3.392108e-16 0.5029606  0.6879699    0.3319110    0.2283103
3large (4+)  4.791195e-06 1.1776906  0.5723498    1.7046942    0.6244793
4As many     3.720785e+00 0.9259039  0.5865379    0.4509189    0.7692632
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.4039824    0.2841749     4.267149e+09     3.216466e+09
3large (4+)     1.1988899    0.9052333     4.149711e-01     3.979847e-01
4As many        0.7522603    0.3900858     1.173171e+00     8.436304e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    2.054087e+09  4.279772e+09 7.147768e-10   1.219325e-08
3large (4+)     3.065027e-01  2.919348e-01 2.530250e+04   2.847193e+04
4As many        1.613356e+00  2.127959e+00 1.336731e-01   3.026145e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.553585e+06   8.087947e+05 3.584551e+06      2.032489e-09
3large (4+)    1.047523e+05   2.331730e+04 1.418758e-08      8.208128e+04
4As many       4.440621e-01   1.937483e-01 4.987588e-01      1.358127e-01
z <- models[["grnexagg_rc"]][["coefficients"]]/models[["grnexagg_rc"]][["standard.errors"]]
p.16 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.16
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.008592706 0.351497913   0.09044566   0.04913877
3large (4+)    0.0000000 0.362388574 0.197497621   0.52395260   0.62182216
4As many       0.3412862 0.391203030 0.005837872   0.02664750   0.44697765
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1371598  0.035595080        0.0000000        0.0000000
3large (4+)     0.8309896  0.909956110        0.2389617        0.3124749
4As many        0.3959214  0.006799262        0.7597318        0.7800786
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1380624     0.1522086   0.0000000      0.0000000
4As many           0.3620278     0.1573251   0.1294435      0.3747319
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000       0.000000   0.0000000         0.0000000
3large (4+)       0.0000000       0.000000   0.0000000         0.0000000
4As many          0.5291728       0.188847   0.6417667         0.1443975

grncon

# How concerned are you about environmental issues? not -> very
exp(coef(models$grncon))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 3.465794e-31 3.2630456  0.7535393    0.3452532    0.2004138
3large (4+)  1.368746e-09 0.8904979  0.5685281    1.6686335    0.6169582
4As many     1.636041e+00 1.1682362  0.5980646    0.4564590    0.7778807
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.4048927    0.2409983     1.443563e+23     1.169997e+23
3large (4+)     1.2164394    0.9298440     4.203493e-01     3.923584e-01
4As many        0.7715388    0.3792462     1.151224e+00     8.329414e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    8.023891e+22  1.499569e+23 6.785239e-05   3.463702e-07
3large (4+)     2.961093e-01  2.835425e-01 2.157429e+08   2.433480e+08
4As many        1.573643e+00  2.010779e+00 1.351051e-01   3.035709e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   6.036667e+04   3.119060e+04 9.970299e+04      3.294851e-07
3large (4+)    8.660367e+08   1.900857e+08 2.889861e-13      6.497514e+08
4As many       4.620075e-01   2.003013e-01 4.612200e-01      1.380577e-01
z <- models[["grncon"]][["coefficients"]]/models[["grncon"]][["standard.errors"]]
p.17 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.17
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.001797804 0.483382324   0.10348739   0.03311761
3large (4+)    0.0000000 0.535741419 0.195462332   0.53925432   0.61298742
4As many       0.7328968 0.112228391 0.008150527   0.02935637   0.46620445
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1364841  0.017031457        0.0000000        0.0000000
3large (4+)     0.8170031  0.933968713        0.2448629        0.3051872
4As many        0.4390873  0.005336357        0.7889427        0.7655162
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1249771     0.1431250   0.0000000      0.0000000
4As many           0.3903932     0.1945462   0.1329815      0.3782177
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000         NaN         0.0000000
4As many          0.5514797      0.2002846   0.6060622         0.1497894

helpharm

# I find it hard to know whether the way I live is helpful or harmful to the environment. agree -> disagree
exp(coef(models$helpharm))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 3.393828e-25 1.4968592  0.6408484    0.2611922    0.1507710
3large (4+)  9.074544e-09 0.7582617  0.6013685    1.7742166    0.7058951
4As many     3.057992e+00 1.0213141  0.5759101    0.4393816    0.7399433
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2590538    0.2111605     1.482311e+19     1.089304e+19
3large (4+)     1.3439272    0.9663380     4.285610e-01     4.064786e-01
4As many        0.7128108    0.3777090     1.194776e+00     8.629316e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    8.521955e+18  1.873463e+19 5.068809e-07   1.112841e-09
3large (4+)     3.053443e-01  3.029447e-01 3.998763e+07   4.195908e+07
4As many        1.686036e+00  2.243688e+00 1.278410e-01   3.011190e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   4.186942e+04   2.051771e+04 7.134197e+04      2.450507e-09
3large (4+)    1.668395e+08   3.874452e+07 8.420107e-12      1.255156e+08
4As many       4.359781e-01   1.878506e-01 4.786475e-01      1.332958e-01
z <- models[["helpharm"]][["coefficients"]]/models[["helpharm"]][["standard.errors"]]
p.18 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.18
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.08194665 0.265241135   0.03891714   0.01121293
3large (4+)    0.0000000 0.20554094 0.237878858   0.49148918   0.71576659
4As many       0.4256246 0.84093186 0.004154825   0.02184254   0.38500179
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.02440729  0.009690310        0.0000000        0.0000000
3large (4+)    0.72683967  0.968847962        0.2599911        0.3273226
4As many       0.31063385  0.005316213        0.7333858        0.8085943
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000       0.000000
3large (4+)        0.1377211     0.1677467   0.0000000       0.000000
4As many           0.3180991     0.1288991   0.1209977       0.372832
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5199428      0.1805996   0.6219952         0.1408006

grneffme

# Environmental problems have a direct effect on my everyday life. agree -> disagree
exp(coef(models$grneffme))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.741924e-15 0.4917247  0.6506906    0.3053250    0.1537065
3large (4+)  5.202518e-06 1.3702703  0.5680082    1.7187446    0.7074288
4As many     2.840782e+00 1.0464633  0.5707585    0.4388213    0.7512664
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2759283    0.2038808     3.420603e+09     3.056734e+09
3large (4+)     1.3318464    1.0086729     4.253640e-01     3.694776e-01
4As many        0.7211977    0.3854634     1.198191e+00     8.590974e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.946234e+09  4.154776e+09 2.278336e-09   1.204400e-08
3large (4+)     2.951666e-01  2.956912e-01 1.414118e+04   1.761953e+04
4As many        1.698213e+00  2.298940e+00 1.288334e-01   3.133767e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   5.980323e+05   3.877174e+05 2.241553e+06      1.315956e-08
3large (4+)    5.604464e+04   1.171814e+04 2.690664e-08      4.429575e+04
4As many       4.431477e-01   1.880140e-01 4.734741e-01      1.358416e-01
z <- models[["grneffme"]][["coefficients"]]/models[["grneffme"]][["standard.errors"]]
p.19 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.19
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.003611611 0.293658871   0.06949659   0.01262753
3large (4+)    0.0000000 0.146863930 0.189198191   0.51696528   0.71782350
4As many       0.4583804 0.649313673 0.003701672   0.02161013   0.40579584
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03225309  0.008566329        0.0000000        0.0000000
3large (4+)    0.73643733  0.992202784        0.2540759        0.2782475
4As many       0.32434734  0.006237884        0.7295093        0.8030413
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1242661     0.1544759   0.0000000      0.0000000
4As many           0.3110940     0.1169765   0.1231701      0.3904046
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5291052      0.1817142   0.6173173         0.1454408

nobuygrn

# How often do you avoid buying certain products for environmental reasons? always -> never
exp(coef(models$nobuygrn))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.516942e-14 0.4596242  0.8358117    0.2940947    0.1544023
3large (4+)  1.609741e-06 1.3777459  0.5410845    1.6604298    0.6960769
4As many     2.994703e+00 1.0257848  0.5711266    0.4403524    0.7494235
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2861847    0.2182758     2.373021e+09     1.882503e+09
3large (4+)     1.2853876    0.9157181     4.108227e-01     4.011704e-01
4As many        0.7197446    0.3828255     1.192500e+00     8.592503e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.364625e+09  2.687133e+09 9.774437e-10   3.341191e-09
3large (4+)     3.054888e-01  3.051542e-01 5.167766e+04   5.630101e+04
4As many        1.696318e+00  2.280111e+00 1.300312e-01   3.099325e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.279323e+05   6.367370e+04 2.628061e+05      3.291984e-09
3large (4+)    1.681135e+05   4.171703e+04 1.161456e-07      1.494917e+05
4As many       4.420061e-01   1.903211e-01 4.892736e-01      1.355928e-01
z <- models[["nobuygrn"]][["coefficients"]]/models[["nobuygrn"]][["standard.errors"]]
p.23 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.23
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.00172803 0.664054122   0.06148212   0.01253371
3large (4+)    0.0000000 0.24026963 0.160843499   0.54226599   0.70416038
4As many       0.4412426 0.83090310 0.004260095   0.02208750   0.40193780
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03881278  0.012675128        0.0000000        0.0000000
3large (4+)    0.76652867  0.919899319        0.2358360        0.3205969
4As many       0.32128681  0.005678805        0.7362469        0.8032836
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1363959     0.1692455   0.0000000      0.0000000
4As many           0.3121423     0.1207287   0.1250217      0.3861392
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5270029      0.1844848   0.6324514         0.1450554

clmtcaus

# Descirbe opinion about climate. not changing -> anthropogenic change
exp(coef(models$clmtcaus))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 3.787079e-23 3.0390996  0.6527036    0.3045796    0.2215889
3large (4+)  1.029957e-05 0.5987214  0.5516307    1.6696027    0.5511881
4As many     4.867569e+00 0.8916211  0.5681979    0.4376235    0.7251604
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3759650    0.3158484     5.356009e+15     4.258060e+15
3large (4+)     1.0624750    0.8200156     4.154832e-01     3.768220e-01
4As many        0.6905948    0.3691626     1.203536e+00     8.706723e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    2.791127e+15  6.073030e+15 1.478624e-06   1.036609e-08
3large (4+)     3.115576e-01  3.022653e-01 1.134688e+05   1.296582e+05
4As many        1.744215e+00  2.365195e+00 1.279724e-01   3.120316e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   5.561668e+04   2.685367e+04 1.027345e+05      6.363831e-09
3large (4+)    4.522766e+05   9.733136e+04 5.125422e-09      3.574264e+05
4As many       4.355781e-01   1.880209e-01 4.900076e-01      1.349846e-01
z <- models[["clmtcaus"]][["coefficients"]]/models[["clmtcaus"]][["standard.errors"]]
p.24 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.24
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)    0.000000 0.02005714 0.287681664   0.06627265   0.04392628
3large (4+)     0.000000 0.09570242 0.170896682   0.54030712   0.53487220
4As many        0.282956 0.44896168 0.003494332   0.02122219   0.35282097
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1042010   0.05319478        0.0000000        0.0000000
3large (4+)     0.9434821   0.82246747        0.2410562        0.2889101
4As many        0.2703395   0.00441200        0.7233282        0.8202561
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1429892     0.1651476   0.0000000      0.0000000
4As many           0.2893698     0.1071584   0.1217018      0.3880645
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)       0.000000      0.0000000   0.0000000         0.0000000
3large (4+)        0.000000      0.0000000         NaN         0.0000000
4As many           0.520163      0.1815573   0.6336879         0.1439206

clmtwrld

# scale of 0-10, how bad or good do  you think the impacts of climate change will be for the world as a whole. bad -> good
exp(coef(models$clmtwrld))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 3.349787e-17 0.6793451  0.6366604    0.3049228    0.1904393
3large (4+)  1.120829e-05 1.0419169  0.6009018    1.7830855    0.6603382
4As many     3.382619e+00 0.9296199  0.5772660    0.4561938    0.7712057
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3712584    0.2725738     1.867863e+10     1.349072e+10
3large (4+)     1.2712518    0.9360702     4.032296e-01     3.883297e-01
4As many        0.7771452    0.3975614     1.216548e+00     8.850375e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    8.364687e+09  1.708193e+10 2.115289e-09   7.789731e-09
3large (4+)     2.905731e-01  2.798575e-01 1.444674e+04   1.554764e+04
4As many        1.618184e+00  2.090951e+00 1.376521e-01   3.203876e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   3.662117e+06   1.209879e+06 5.080949e+06      1.339646e-09
3large (4+)    5.282523e+04   1.274692e+04 2.235058e-08      4.101243e+04
4As many       5.196160e-01   2.096165e-01 5.175844e-01      1.516150e-01
z <- models[["clmtwrld"]][["coefficients"]]/models[["clmtwrld"]][["standard.errors"]]
p.25 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.25
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.001945898 0.262315101   0.06964745   0.02812743
3large (4+)    0.0000000 0.629888186 0.235803287   0.48972453   0.66387516
4As many       0.3734625 0.111104552 0.004397894   0.02896263   0.44997429
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1057557  0.031204120        0.0000000        0.0000000
3large (4+)     0.7769575  0.940183311        0.2219093        0.2978795
4As many        0.4517341  0.008071831        0.7089212        0.8418185
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)        0.000000     0.0000000   0.0000000      0.0000000
3large (4+)         0.118629     0.1373334   0.0000000      0.0000000
4As many            0.360045     0.1678721   0.1341614      0.3972446
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000               NaN
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.6121065      0.2100525   0.6586325         0.1675945

clmtusa

# scale of 0-10, how bad or good do  you think the impacts of climate change will be for America. bad -> good
exp(coef(models$clmtusa))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 2.344275e-17 0.7224981  0.6569282    0.2869458    0.1854493
3large (4+)  6.693368e-06 1.0940379  0.6045526    1.7630298    0.6309014
4As many     3.503587e+00 0.9395523  0.5759042    0.4464681    0.7640506
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3627539    0.2604497     9.486114e+10     7.489918e+10
3large (4+)     1.1944454    0.8851252     4.191320e-01     3.923867e-01
4As many        0.7646466    0.3934857     1.168665e+00     8.685818e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    4.631380e+10  1.011534e+11 5.003882e-09   6.716041e-08
3large (4+)     3.025015e-01  2.972417e-01 2.115725e+04   2.024824e+04
4As many        1.593902e+00  2.084628e+00 1.357621e-01   3.327167e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   8.091476e+05   3.088938e+05 1.274329e+06      1.326029e-08
3large (4+)    7.426533e+04   1.842654e+04 7.683734e-09      5.985285e+04
4As many       4.972965e-01   2.056476e-01 5.211113e-01      1.455970e-01
z <- models[["clmtusa"]][["coefficients"]]/models[["clmtusa"]][["standard.errors"]]
p.26 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.26
             (Intercept)           x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.004932221 0.29609858   0.05547548   0.02455297
3large (4+)    0.0000000 0.299553624 0.24325105   0.49903845   0.63022821
4As many       0.3604903 0.177033533 0.00420692   0.02467768   0.43403895
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.09503394  0.025005807        0.0000000        0.0000000
3large (4+)    0.83395766  0.889697881        0.2443021        0.3032378
4As many       0.42267228  0.007412954        0.7662761        0.8174831
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1331654     0.1579374   0.0000000      0.0000000
4As many           0.3755793     0.1697862   0.1317308      0.4137704
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5884925      0.2049549   0.6625041         0.1585612

naturdev

# How willing would you be to accept a reduction in the size of America's protected nature areas in order to open them up for economic development? willing -> unwilling
exp(coef(models$naturdev_rc))
               (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)  0.000000e+00 0.6219422  0.6432548    0.2912025    0.1780749
3large (4+)  3.345956e-163 1.0134900  0.6032235    1.7524365    0.6433914
4As many      5.215388e+00 0.7357037  0.5879909    0.4449053    0.7699707
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3410358    0.2472957              Inf              Inf
3large (4+)     1.2932330    0.9310817        0.4058574        0.3868490
4As many        0.8027366    0.3820376        1.1659451        0.7736107
             educ4Bachelor's educ5Graduate   racethAsian racethHispanic
1small (0-1)             Inf           Inf  3.061057e-32   7.050062e-67
3large (4+)        0.2817135      0.267475 5.228259e+161  5.727171e+161
4As many           1.5440802      1.989032  1.630466e-01   3.493867e-01
             racethNH Black racethNH White   racethOther racethTwo or More
1small (0-1)   9.055542e+04   2.916919e+04  9.938989e+04      3.620427e-61
3large (4+)   2.081342e+162  4.726450e+161 5.025500e-191     1.550768e+162
4As many       6.180028e-01   2.008466e-01  4.181898e-01      1.490188e-01
z <- models[["naturdev_rc"]][["coefficients"]]/models[["naturdev_rc"]][["standard.errors"]]
p.27 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.27
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.070582537 0.268341934   0.05537428   0.02062269
3large (4+)    0.0000000 0.946700364 0.238514259   0.50104892   0.64370942
4As many       0.2323359 0.005991324 0.006086298   0.02468514   0.44913400
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.07351513  0.018547835        0.0000000        0.0000000
3large (4+)    0.76084830  0.935137962        0.2266065        0.3015299
4As many       0.51367475  0.005891216        0.7712888        0.6774798
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN            NaN
3large (4+)        0.1101283     0.1242071   0.0000000       0.000000
4As many           0.4123648     0.2009762   0.1711052       0.434611
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000               NaN
3large (4+)       0.0000000      0.0000000         NaN         0.0000000
4As many          0.7096531      0.1971976   0.5585947         0.1636187

carsgen

# Do you think air pollution caused by cars is..dangerous -> not dangerous
exp(coef(models$carsgen))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 4.828357e-16 0.4930801  0.6660667    0.3110283    0.1898802
3large (4+)  1.023111e-05 0.9599486  0.6000081    1.7378586    0.6450505
4As many     2.311179e+00 1.1723367  0.5638704    0.4370947    0.7367778
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3331084    0.2407009     4.229949e+09     3.120567e+09
3large (4+)     1.2597202    0.9023090     4.027397e-01     3.760113e-01
4As many        0.7082804    0.3840097     1.222907e+00     8.844324e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    2.258998e+09  5.124694e+09 2.604171e-10   8.521154e-09
3large (4+)     2.766221e-01  2.593267e-01 2.028436e+04   2.077306e+04
4As many        1.783436e+00  2.442841e+00 1.160329e-01   3.151535e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.300263e+06   8.118269e+05 3.156076e+06      3.313390e-09
3large (4+)    8.026750e+04   1.814498e+04 5.844761e-08      5.868359e+04
4As many       4.255729e-01   1.729465e-01 4.593584e-01      1.303053e-01
z <- models[["carsgen"]][["coefficients"]]/models[["carsgen"]][["standard.errors"]]
p.12 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.12
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.006127942 0.312471193   0.07133669    0.0271372
3large (4+)    0.0000000 0.875336764 0.234853226   0.50645264    0.6451328
4As many       0.5462906 0.181455878 0.003120706   0.02138505    0.3750376
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.06823255  0.017708095        0.0000000        0.0000000
3large (4+)    0.78422253  0.906554258        0.2225014        0.2838338
4As many       0.29962411  0.005916979        0.7008135        0.8403413
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000    0.00000000   0.0000000      0.0000000
3large (4+)        0.1057333    0.11533554   0.0000000      0.0000000
4As many           0.2703236    0.09418643   0.1034918      0.3897397
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000               NaN
3large (4+)       0.0000000      0.0000000   0.0000000          0.000000
4As many          0.5060477      0.1585963   0.6019315          0.135229

tempgen1

# Do you think a rise in the world's tempaerture caused by climate change is...dangerous -> not dangerous
exp(coef(models$tempgen1))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 3.781655e-16 0.4075799  0.6555624    0.3319057    0.2424970
3large (4+)  6.252872e-06 1.5115154  0.5789414    1.5704251    0.6004630
4As many     2.835922e+00 1.1018130  0.5718268    0.4370286    0.7291621
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.4044439    0.3067103     6.162455e+09     4.727751e+09
3large (4+)     1.0298512    0.8386721     3.797074e-01     3.490583e-01
4As many        0.6915633    0.3720785     1.185995e+00     8.590427e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    3.045432e+09  6.175946e+09 3.961560e-10   2.226476e-08
3large (4+)     3.089434e-01  3.097056e-01 1.304231e+04   1.765978e+04
4As many        1.745925e+00  2.378262e+00 1.194257e-01   3.055495e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.315089e+06   6.319368e+05 2.476357e+06      7.105459e-09
3large (4+)    5.064118e+04   1.154907e+04 9.730916e-09      4.452610e+04
4As many       4.119444e-01   1.769939e-01 4.584266e-01      1.294618e-01
z <- models[["tempgen1"]][["coefficients"]]/models[["tempgen1"]][["standard.errors"]]
p.20 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.20
             (Intercept)           x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.002679368 0.294339485   0.09260549   0.05859397
3large (4+)    0.0000000 0.046145595 0.205722600   0.58980272   0.59297788
4As many       0.4502791 0.337205367 0.003759896   0.02107124   0.35982603
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1380115   0.05048149        0.0000000        0.0000000
3large (4+)     0.9725789   0.84180431        0.1977562        0.2540908
4As many        0.2704479   0.00455060        0.7441864        0.8029021
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1400551     0.1729833   0.0000000      0.0000000
4As many           0.2872775     0.1036839   0.1103456      0.3795084
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.4932094      0.1670027   0.6022905         0.1361002

indusgen1

# Do you think air pollution caused by industry is...dangerous -> not dangerous
exp(coef(models$indusgen1))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.489815e-15 0.3338987  0.7417484    0.3493831    0.2449068
3large (4+)  6.619473e-06 1.0764053  0.5862747    1.7299727    0.6342765
4As many     3.206575e+00 1.0046474  0.5749803    0.4419756    0.7471159
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.4463347    0.3159870     2.301631e+09      1.43920e+09
3large (4+)     1.2371171    0.8980636     4.109199e-01      3.89416e-01
4As many        0.7203378    0.3819812     1.197316e+00      8.67125e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.248255e+09  2.798899e+09 1.599662e-10   1.669022e-08
3large (4+)     2.860230e-01  2.709219e-01 2.418442e+04   2.709017e+04
4As many        1.696887e+00  2.269770e+00 1.272673e-01   3.035958e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   9.975318e+05   5.033987e+05 1.586051e+06      4.573182e-09
3large (4+)    9.677709e+04   2.171513e+04 9.891072e-08      7.386983e+04
4As many       4.349971e-01   1.877906e-01 4.792785e-01      1.332819e-01
z <- models[["indusgen1"]][["coefficients"]]/models[["indusgen1"]][["standard.errors"]]
p.28 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.28
             (Intercept)            x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.0009568888 0.457987130   0.10912723    0.0624439
3large (4+)    0.0000000 0.7911145299 0.218906530   0.51007236    0.6331784
4As many       0.4007947 0.9699368880 0.004510065   0.02286723    0.3989178
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.1902502  0.057952607        0.0000000        0.0000000
3large (4+)     0.8020981  0.902544605        0.2332133        0.3040106
4As many        0.3284509  0.005781521        0.7304508        0.8151452
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1138186     0.1263532   0.0000000      0.0000000
4As many           0.3124320     0.1228353   0.1201965      0.3762669
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000       0.000000   0.0000000         0.0000000
3large (4+)       0.0000000       0.000000   0.0000000         0.0000000
4As many          0.5187913       0.180547   0.6226002         0.1407985

chemgen1

# Do you think pesticides and chemicals used in farming are...dangerous -> not dangerous
exp(coef(models$chemgen1))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.048623e-14 0.2866840  0.8985836    0.2217961    0.1294066
3large (4+)  6.054309e-06 1.0454908  0.5901479    1.7391516    0.6419976
4As many     3.724715e+00 0.9436562  0.5896530    0.4366118    0.7375193
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2557487    0.1754260     6.645613e+08     4.898277e+08
3large (4+)     1.2730119    0.9104202     4.094068e-01     3.853648e-01
4As many        0.7137020    0.3746651     1.182523e+00     8.609755e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    4.359720e+08  8.499418e+08 1.849929e-10   7.594242e-09
3large (4+)     2.833198e-01  2.680356e-01 2.785534e+04   3.069092e+04
4As many        1.675805e+00  2.233551e+00 1.264373e-01   2.915579e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.131407e+06   5.158742e+05 1.029787e+06      1.489922e-09
3large (4+)    1.095681e+05   2.466689e+04 7.515322e-08      8.247557e+04
4As many       4.350991e-01   1.877673e-01 4.577701e-01      1.293875e-01
z <- models[["chemgen1"]][["coefficients"]]/models[["chemgen1"]][["standard.errors"]]
p.29 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.29
             (Intercept)            x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 3.419792e-05 0.796382385   0.02570899  0.007248331
3large (4+)    0.0000000 8.563207e-01 0.224695768   0.50587309  0.641656052
4As many       0.3469279 6.014138e-01 0.007202583   0.02108757  0.377035213
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.02790132  0.005499958        0.0000000        0.0000000
3large (4+)    0.77522289  0.914799818        0.2310913        0.2971323
4As many       0.31010120  0.004905964        0.7485518        0.8059674
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000         NaN      0.0000000
3large (4+)        0.1105121     0.1224883   0.0000000      0.0000000
4As many           0.3237034     0.1299289   0.1185765      0.3605375
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000       0.000000   0.0000000         0.0000000
3large (4+)       0.0000000       0.000000   0.0000000         0.0000000
4As many          0.5185385       0.180035   0.6014886         0.1350675

watergen1

# Do you think pollution of America's rivers, lakes, and streams is...dangerous -> not dangerous
exp(coef(models$watergen1))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.502552e-16 0.3707697  0.7994598    0.2844642    0.1650663
3large (4+)  5.359138e-06 1.4609728  0.5370933    1.7896843    0.6275374
4As many     3.318198e+00 0.9841340  0.5797452    0.4417570    0.7489739
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3321961    0.2460329     7.504962e+09     5.685068e+09
3large (4+)     1.2261210    0.9099364     4.684803e-01     4.473741e-01
4As many        0.7211541    0.3815071     1.189775e+00     8.608144e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    4.437883e+09  1.026713e+10 9.461639e-11   4.887707e-09
3large (4+)     3.260120e-01  3.179914e-01 1.351914e+04   1.718691e+04
4As many        1.683675e+00  2.257960e+00 1.285610e-01   3.033877e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   2.798884e+06   1.439250e+06 5.616037e+06      4.398419e-09
3large (4+)    5.738948e+04   1.298104e+04 2.709248e-08      5.308702e+04
4As many       4.393745e-01   1.891584e-01 4.777419e-01      1.333243e-01
z <- models[["watergen1"]][["coefficients"]]/models[["watergen1"]][["standard.errors"]]
p.30 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.30
             (Intercept)           x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.002174786 0.58371856   0.05422496   0.01719407
3large (4+)    0.0000000 0.140768143 0.15540245   0.48581664   0.62606438
4As many       0.3859139 0.893373510 0.00527789   0.02267089   0.40002822
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.07037938  0.020354131        0.0000000        0.0000000
3large (4+)    0.80971055  0.914347014        0.3154388        0.3829282
4As many       0.32482263  0.005493057        0.7398931        0.8056394
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000       0.000000
3large (4+)        0.1607249     0.1836815   0.0000000       0.000000
4As many           0.3199230     0.1251423   0.1220808       0.375538
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5238215      0.1823444   0.6208727         0.1405382

nukegen1

# Do you think nuclear power stations are...dangerous -> not dangerous
exp(coef(models$nukegen1))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 2.352465e-16 0.8278738  0.7028850    0.2694083    0.1436148
3large (4+)  8.750355e-06 0.8766102  0.6450470    1.7402251    0.6299917
4As many     2.624390e+00 1.1411898  0.5215712    0.4592114    0.8077342
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2691222    0.2295900     5.810107e+10     4.190069e+10
3large (4+)     1.2743931    0.9304646     4.188275e-01     3.828613e-01
4As many        0.7514086    0.3937872     1.137179e+00     8.416069e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    3.762328e+10  8.824416e+10 1.446512e-08   1.051891e-07
3large (4+)     3.002714e-01  2.821863e-01 2.699770e+04   2.653017e+04
4As many        1.566567e+00  2.105363e+00 1.196690e-01   3.083423e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   8.082630e+04   4.375540e+04 2.079147e+05      3.723312e-08
3large (4+)    1.031436e+05   2.493794e+04 1.323743e-07      7.355151e+04
4As many       4.263057e-01   1.693873e-01 4.412441e-01      1.331857e-01
z <- models[["nukegen1"]][["coefficients"]]/models[["nukegen1"]][["standard.errors"]]
p.31 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.31
             (Intercept)         x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.3342893 0.399026773   0.04224356   0.01069941
3large (4+)    0.0000000 0.5402816 0.328524472   0.50629217   0.62804135
4As many       0.4873435 0.1762241 0.001628534   0.03080575   0.53989459
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.02781569  0.013291266        0.0000000        0.0000000
3large (4+)    0.77418349  0.934682411        0.2422797        0.2930830
4As many       0.39211470  0.007443034        0.8062712        0.7769991
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1303892     0.1391737   0.0000000      0.0000000
4As many           0.3936221     0.1624419   0.1122462      0.3852339
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5118525      0.1591284   0.5864899         0.1433474

grngroup

# Are you a member of environmental group? yes/no
exp(coef(models$grngroup_rc))
              (Intercept)            x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 5.147327e-17 1.729968e+00  0.6426741    0.2896841    0.1716786
3large (4+)  5.303030e-06 8.319362e-12  0.5837432    1.3446083    0.4721558
4As many     3.244239e+00 8.867717e-01  0.5746232    0.4406068    0.7435100
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2898001    0.2420903     3.264080e+11     2.558107e+11
3large (4+)     0.9144252    0.6768892     4.238372e-01     3.468069e-01
4As many        0.7147913    0.3801065     1.198251e+00     8.588292e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    1.976838e+11  4.368371e+11 1.454551e-08   2.097080e-07
3large (4+)     2.850169e-01  2.975254e-01 4.602213e+04   4.648025e+04
4As many        1.699984e+00  2.297206e+00 1.279692e-01   3.037371e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   3.734632e+04   1.954568e+04 8.614188e+04      1.900417e-08
3large (4+)    2.137391e+05   4.668365e+04 5.710863e-08      1.757030e+05
4As many       4.431463e-01   1.908877e-01 4.905208e-01      1.360393e-01
z <- models[["grngroup_rc"]][["coefficients"]]/models[["grngroup_rc"]][["standard.errors"]]
p.32 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.32
             (Intercept)         x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)     0.00000 0.2574713 0.267904286   0.05432216   0.01734523
3large (4+)      0.00000 0.0000000 0.212656457   0.72513262   0.43995269
4As many         0.39087 0.6686257 0.004032959   0.02225326   0.38830783
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03690007  0.016759523        0.0000000        0.0000000
3large (4+)    0.91680054  0.657723313        0.2532157        0.2502787
4As many       0.31142096  0.005324083        0.7291949        0.8025653
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000    0.000000      0.0000000
3large (4+)        0.1160670     0.1576601    0.000000      0.0000000
4As many           0.3097881     0.1169375    0.121167      0.3762743
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5284036      0.1850459   0.6336047         0.1453241

grnsign

# In the last five years, have you signed a petition about an environmental issue? yes/no
exp(coef(models$grnsign_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 1.954560e-17 2.9111298  0.7002595    0.3120460    0.1715854
3large (4+)  3.921721e-06 1.1532431  0.6024093    1.7624760    0.6559609
4As many     3.684619e+00 0.7509165  0.5630988    0.4301403    0.7371367
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3309741    0.2809966     1.022842e+11     7.221996e+10
3large (4+)     1.3001201    0.9331124     4.014921e-01     3.687648e-01
4As many        0.6861691    0.3668475     1.214265e+00     8.946780e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    5.177375e+10  1.147957e+11 3.641987e-08   3.478899e-08
3large (4+)     2.728692e-01  2.551864e-01 4.680814e+04   4.883017e+04
4As many        1.777266e+00  2.424821e+00 1.129863e-01   2.856573e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   2.191827e+05   1.062046e+05 3.409424e+05      1.309395e-08
3large (4+)    1.796019e+05   4.015140e+04 4.249837e-08      1.292357e+05
4As many       4.164567e-01   1.818124e-01 4.975356e-01      1.320657e-01
z <- models[["grnsign_rc"]][["coefficients"]]/models[["grnsign_rc"]][["standard.errors"]]
p.33 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.33
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.01066559 0.378450682   0.07238981   0.01801118
3large (4+)    0.0000000 0.75395879 0.238188057   0.49614140   0.65802364
4As many       0.3451392 0.17448066 0.003005126   0.01885083   0.37517245
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.06660941   0.03534601         0.000000        0.0000000
3large (4+)    0.75671445   0.93722030         0.220280        0.2758612
4As many       0.25829876   0.00396158         0.710913        0.8553157
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000    0.00000000   0.0000000      0.0000000
3large (4+)        0.1012412    0.11002180   0.0000000      0.0000000
4As many           0.2734190    0.09686979   0.1028139      0.3547577
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000       0.000000   0.0000000         0.0000000
3large (4+)       0.0000000       0.000000   0.0000000         0.0000000
4As many          0.4995634       0.174714   0.6416712         0.1408876

grnmoney

# In the last five years, have you given money to an environmental group? yes/no
exp(coef(models$grnmoney_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 2.909811e-18 1.1627443  0.6168749    0.2905121    0.1703828
3large (4+)  7.484683e-07 0.5886060  0.6130271    1.6919027    0.6392001
4As many     3.165584e+00 0.8490575  0.5784438    0.4361144    0.7467384
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.2907194    0.2437537     5.491008e+12     4.088976e+12
3large (4+)     1.2247782    0.8967046     4.351087e-01     4.313614e-01
4As many        0.7124397    0.3817461     1.223329e+00     8.878872e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    3.302148e+12  7.680105e+12 1.079013e-08   6.728787e-08
3large (4+)     3.010804e-01  3.003154e-01 2.525572e+05   2.739730e+05
4As many        1.752771e+00  2.388662e+00 1.301450e-01   3.131910e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   4.592340e+04   2.165834e+04 9.381663e+04      2.291955e-08
3large (4+)    1.022524e+06   2.353635e+05 8.395163e-09      8.348107e+05
4As many       4.469845e-01   1.963892e-01 5.101287e-01      1.422106e-01
z <- models[["grnmoney_rc"]][["coefficients"]]/models[["grnmoney_rc"]][["standard.errors"]]
p.34 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.34
             (Intercept)         x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.7179167 0.225683571   0.05418656   0.01686428
3large (4+)    0.0000000 0.3175893 0.254688611   0.52835599   0.63838075
4As many       0.4013178 0.4396823 0.004497515   0.02083018   0.39542223
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.03698959  0.016827539        0.0000000        0.0000000
3large (4+)    0.81035341  0.901055619        0.2667133        0.3599571
4As many       0.30704284  0.005554543        0.7004502        0.8455009
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)       0.0000000     0.0000000   0.0000000      0.0000000
3large (4+)        0.1312536     0.1629413   0.0000000      0.0000000
4As many           0.2851972     0.1034968   0.1246006      0.3892215
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000         0.0000000
3large (4+)       0.0000000      0.0000000   0.0000000         0.0000000
4As many          0.5330136      0.1932293   0.6529176         0.1550591

grndemo

# In the last five years, have you taken part in a protest or demonstration about an environmental issue? yes/no
exp(coef(models$grndemo_rc))
              (Intercept)         x sex_rcMale age_cat30-39 age_cat40-49
1small (0-1) 8.117378e-16 4.9290501  0.6505212    0.3666184    0.2039195
3large (4+)  4.413403e-06 1.5502203  0.5947103    1.8187387    0.6802140
4As many     3.499947e+00 0.7940557  0.5746242    0.4379882    0.7411119
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)    0.3608852    0.3222604     4.119626e+09     2.947022e+09
3large (4+)     1.3234639    0.9651418     3.962080e-01     3.713358e-01
4As many        0.7132938    0.3759934     1.213699e+00     8.779365e-01
             educ4Bachelor's educ5Graduate  racethAsian racethHispanic
1small (0-1)    2.465157e+09  5.429880e+09 1.708474e-06   5.562636e-06
3large (4+)     2.671367e-01  2.528134e-01 4.138139e+04   4.254750e+04
4As many        1.722068e+00  2.315436e+00 1.175289e-01   2.825877e-01
             racethNH Black racethNH White  racethOther racethTwo or More
1small (0-1)   1.772557e+05   7.040472e+04 1.873785e+05      8.427337e-07
3large (4+)    1.632017e+05   3.611078e+04 2.317039e-07      1.146578e+05
4As many       3.994573e-01   1.752351e-01 4.600631e-01      1.258811e-01
z <- models[["grndemo_rc"]][["coefficients"]]/models[["grndemo_rc"]][["standard.errors"]]
p.35 <- (1 - pnorm(abs(z), 0, 1)) * 2
p.35
             (Intercept)          x  sex_rcMale age_cat30-39 age_cat40-49
1small (0-1)   0.0000000 0.00151929 0.291036391   0.13018384   0.03588296
3large (4+)    0.0000000 0.58553144 0.225364441   0.47450655   0.68713095
4As many       0.3653772 0.57210657 0.004014917   0.02148574   0.38437029
             age_cat50-64 age_cat65-89 educ2High School educ3Associate's
1small (0-1)   0.09826195  0.065567682        0.0000000        0.0000000
3large (4+)    0.74076980  0.967944816        0.2146523        0.2776989
4As many       0.30957001  0.005003783        0.7110603        0.8306890
             educ4Bachelor's educ5Graduate racethAsian racethHispanic
1small (0-1)      0.00000000     0.0000000   0.0000000      0.0000000
3large (4+)       0.09768299     0.1072108   0.0000000      0.0000000
4As many          0.29884238     0.1137681   0.1097744      0.3517314
             racethNH Black racethNH White racethOther racethTwo or More
1small (0-1)      0.0000000      0.0000000   0.0000000          0.000000
3large (4+)       0.0000000      0.0000000   0.0000000          0.000000
4As many          0.4812822      0.1669198   0.6048274          0.132132

Variables to explore:

ISSP Environmentalism variables start on p 486 of codebook

Variable Question Answer choices use?
grnprice how willing would you be to pay much higher prices in order to protect the environment 1-5 - very willing to very unwilling

44.1% RR

1,778 responses

grnsol how willing would you be to accept cuts in your standard of living in order to protect the env? 1-5 - very willing to very unwilling

44.1% RR

1,778 responses

grntaxes how willing would you be to pay much higher taxes in order to protect the env? 1-5 - very willing to very unwilling

44.0% RR

1,775 responses

grngroup Are you a member of any group that preserves or protects the environment yes/no

45.1%

1,820 responses

grnsign In the last 5 years, have you signed a petition about an environmental issue? yes/no

44.7%

1,802 responses

grnmoney In the last 5 years, have you given money to an environmental group? yes/no

45.0%

1,814 responses

grndemo In the last 5 years, have you taken part in a protest or demonstration about an environmental issue? yes/no

45.1%

1,817 responses

nobuygrn how often do you avoid buying certain products for env reasons? 1 Always , 2 Often, 3 Sometimes, 4 Never

45.2% RR

1,821 responses

recycle how often do you make a special effort to sort glass/cans/plastic/newspaper for recycling 1 Always , 2 Often, 3 Sometimes, 4 Never

42.2% RR

1,700 responses

scigrn modern science will solve our environmental problems with little change to our way of life 1 agree strongly, 5 disagree strongly

43.9%

1,772 responses

harmsgrn almost everything we do in life harms the environment 1 agree strongly, 5 disagree strongly

44.6%

1,798

ihlpgrn I do what is right for the env even when it costs more money or takes more time 1 agree strongly, 5 disagree strongly

44.2% RR

1,781 responses

grncon how concerned are you about env issues? 1 not at all concerned - 5 very concerned

45.2% responses

1,823 responses

grneffme env problems have a direct effect on my everyday life 1 agree strongly - 5 disagree strongly

43.8% RR

1,768 responses

grwtharm economic growth harms the environment 1 agree strongly - 5 disagree strongly

43.9%

1,771 responses

grwthelp

REVERSE

in order to protect the environment, America needs economic growth 1 agree strongly - 5 disagree strongly

43.5%

1,754 responses

grnexagg

REVERSE

many of the claims abt env threats are exaggerated 1 agree strongly - 5 disagree strongly

44.1% RR

1,777 responses

grnprog

REVERSE

people worry too much about human progress harming the environment 1 agree strongly - 5 disagree strongly

43.9%

1,772 responses

naturdev

REVERSE

how willing would you be to accept a reduction in the size of America’s protected nature areas in order to open them up for econ development? 1 very willing - 5 very unwilling

43.9%

1,771 responses

impgrn

REVERSE

There are more imp things to do in life than protect the environment 1 agree strongly - 5 disagree strongly

44.3% RR

1,788 responses

grnecon

REVERSE

We worry too much about the future of the environment and not enough about prices and jobs today 1 agree strongly - 5 disagree strongly

44.5% RR

1,795 responses

helpharm I find it hard to know whether the way I live is helpful or harmful to the environment 1 agree strongly - 5 disagree strongly

43.8% RR

1,761 responses

othssame There is no point in doing what I can for the env unless others do the same 1 agree strongly - 5 disagree strongly

44.4% RR

1,791 responses

toodifme It is too difficult for someone like me to do much about the env 1 agree strongly - 5 disagree strongly

44.2%

1,783 responses

tempgen1 Do you think that a rise in the world’s temperature change is… 1 extremely dangerous - 5 not at all dangerous

43.0% RR

1,734 responses

watergen1 Do you think that pollution of America’s rivers, lakes and streams is 1 extremely dangerous - 5 not at all dangerous

44.1% RR

1,780 responses

carsgen Do you think air pollution caused by cars is 1 extremely dangerous - 5 not at all dangerous

44.1%

1,778 responses

indusgen1 Do you think air pollution cause by industry is 1 extremely dangerous - 5 not at all dangerous

44.1%

1,779 responses

chemgen1 Do you think pesticides an chemicals used in farming are 1 extremely dangerous - 5 not at all dangerous

44.0%

1,773 responses

nukegen1 Do you think that nuclear power stations are 1 extremely dangerous - 5 not at all dangerous

43.2%

1,743 responses

CONFIDENCE QUESTIONS
confed Confidence in federal government 1 A great deal - 3 Hardly any

65.9% RR

2,658 responses

conlegis Confidence in congress 1 A great deal - 3 Hardly any

66.0% RR

2,661 responses

conjudge Confidence in Supreme Court 1 A great deal - 3 Hardly any

66.0% RR

2,662 responses

consci Confidence in scientific community 1 A great deal - 3 Hardly any

65.8% RR

2,654 responses

conmedic Confidence in medicine 1 A great deal - 3 Hardly any

66.0% RR

2,662 responses

chldidel ideal number of children for a family 1 - 7, 8 As many as you want

66.8% RR

2,693 responses

polviews where would you place yourself on 7 point scale 1 Extremely Liberal, 7 Extremely Conservative

98.3%

3,964 responses