First we are going to load our required library for this analysis, which is SQMtools
Since we ran this analysis in sequential mode (one sample at a time), we have output files for each sample run. We now need to combine these samples into a single file using the ‘coimbineSQMlite’ command
We’ll first combine the first 4 sample datasets (which represent a single biological sample)
We’ll now combine the next 4 datasets into the second biological sample for AT340Sed
And finaly the last four datasets into the last biological sample.
These are the taxa identified for the ATS Deep Seep samples
All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)
plotTaxonomy(All_ATS, rank='superkingdom', count='percent', ignore_unmapped = TRUE)
## Warning in mostAbundant(data, N = N, items = tax, others = others, rescale =
## rescale): N=15 but only 7 items exist. Returning 7 items
## Warning in mostAbundant(data, N = N + rr, items = tax, others = others, : N=16
## but only 7 items exist. Returning 7 items
All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)
plotTaxonomy(All_ATS, rank='phylum', count='percent', ignore_unmapped = TRUE)
All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)
plotTaxonomy(All_ATS, rank='class', count='percent', ignore_unmapped = TRUE)
All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)
plotTaxonomy(All_ATS, rank='order', count='percent', ignore_unmapped = TRUE)
All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)
plotTaxonomy(All_ATS, rank='family', count='percent', ignore_unmapped = TRUE)
All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)
plotTaxonomy(All_ATS, rank='species', count='percent', ignore_unmapped = TRUE)
These are the taxa identified for the Avery Island samples
All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)
plotTaxonomy(All_Sed, rank='superkingdom', count='percent', ignore_unmapped = TRUE)
## Warning in mostAbundant(data, N = N, items = tax, others = others, rescale =
## rescale): N=15 but only 7 items exist. Returning 7 items
## Warning in mostAbundant(data, N = N + rr, items = tax, others = others, : N=16
## but only 7 items exist. Returning 7 items
All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)
plotTaxonomy(All_Sed, rank='phylum', count='percent', ignore_unmapped = TRUE)
All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)
plotTaxonomy(All_Sed, rank='genus', count='percent', ignore_unmapped = TRUE)
All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)
plotTaxonomy(All_Sed, rank='order', count='percent', ignore_unmapped = TRUE)
All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)
plotTaxonomy(All_Sed, rank='family', count='percent', ignore_unmapped = TRUE)
All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)
plotTaxonomy(All_Sed, rank='species', count='percent', ignore_unmapped = TRUE)
These are the taxa identified for the Spore protocol samples
All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)
plotTaxonomy(All_Spore, rank='superkingdom', count='percent', ignore_unmapped = TRUE)
## Warning in mostAbundant(data, N = N, items = tax, others = others, rescale =
## rescale): N=15 but only 7 items exist. Returning 7 items
## Warning in mostAbundant(data, N = N + rr, items = tax, others = others, : N=16
## but only 7 items exist. Returning 7 items
All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)
plotTaxonomy(All_Spore, rank='phylum', count='percent', ignore_unmapped = TRUE)
All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)
plotTaxonomy(All_Spore, rank='genus', count='percent', ignore_unmapped = TRUE)
All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)
plotTaxonomy(All_Spore, rank='order', count='percent', ignore_unmapped = TRUE)
All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)
plotTaxonomy(All_Spore, rank='family', count='percent', ignore_unmapped = TRUE)
All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)
plotTaxonomy(All_Spore, rank='species', count='percent', ignore_unmapped = TRUE)
These are the pathways identified
plotFunctions(All_ATS, fun_level = 'KEGG', count = 'copy_number', N = 8, base_size = 28)
plotFunctions(All_ATS, fun_level = 'COG', count = 'copy_number', N = 8, base_size = 28)
plotFunctions(All_ATS, fun_level = 'PFAM', count = 'copy_number', N = 8, base_size = 28)
plotFunctions(All_Sed, fun_level = 'KEGG', count = 'copy_number', N = 8, base_size = 28)
plotFunctions(All_Sed, fun_level = 'COG', count = 'copy_number', N = 8, base_size = 28)
plotFunctions(All_Sed, fun_level = 'PFAM', count = 'copy_number', N = 8, base_size = 28)
plotFunctions(All_Spore, fun_level = 'PFAM', count = 'tpm', N = 8 , base_size = 28)
plotFunctions(All_Spore, fun_level = 'COG', count = 'tpm', N = 8, base_size = 28 )
plotFunctions(All_Spore, fun_level = 'COG', count = 'tpm', N = 8, base_size = 28 )
antibiotic1 = subsetFun(ATS1, fun = 'antibiotic', rescale_copy_number = F)
antibiotic2 = subsetFun(ATS2, fun = 'antibiotic', rescale_copy_number = F)
antibiotic3 = subsetFun(ATS3, fun = 'antibiotic', rescale_copy_number = F)
antibiotic4 = subsetFun(ATS4, fun = 'antibiotic', rescale_copy_number = F)
antibiotic5 = subsetFun(ATS5, fun = 'antibiotic', rescale_copy_number = F)
antibiotic6 = subsetFun(ATS6, fun = 'antibiotic', rescale_copy_number = F)
antibiotic7 = subsetFun(ATS7, fun = 'antibiotic', rescale_copy_number = F)
antibiotic8 = subsetFun(ATS8, fun = 'antibiotic', rescale_copy_number = F)
antibiotic9 = subsetFun(ATS9, fun = 'antibiotic', rescale_copy_number = F)
antibiotic10 = subsetFun(ATS10, fun = 'antibiotic', rescale_copy_number = F)
antibiotic11 = subsetFun(ATS11, fun = 'antibiotic', rescale_copy_number = F)
antibiotic12 = subsetFun(ATS12, fun = 'antibiotic', rescale_copy_number = F)
ATS_Antibiotics <- combineSQMlite(antibiotic1, antibiotic2, antibiotic3, antibiotic4, antibiotic5, antibiotic6, antibiotic7, antibiotic8, antibiotic9, antibiotic10, antibiotic11, antibiotic12)
plotTaxonomy(ATS_Antibiotics, rank = 'genus', count = 'percent', base_size = 20)
antibiotic1 = subsetFun(Sed1, fun = 'antibiotic', rescale_copy_number = F)
antibiotic2 = subsetFun(Sed2, fun = 'antibiotic', rescale_copy_number = F)
antibiotic3 = subsetFun(Sed3, fun = 'antibiotic', rescale_copy_number = F)
antibiotic4 = subsetFun(Sed4, fun = 'antibiotic', rescale_copy_number = F)
antibiotic5 = subsetFun(Sed5, fun = 'antibiotic', rescale_copy_number = F)
antibiotic6 = subsetFun(Sed6, fun = 'antibiotic', rescale_copy_number = F)
antibiotic7 = subsetFun(Sed7, fun = 'antibiotic', rescale_copy_number = F)
antibiotic8 = subsetFun(Sed8, fun = 'antibiotic', rescale_copy_number = F)
antibiotic9 = subsetFun(Sed9, fun = 'antibiotic', rescale_copy_number = F)
antibiotic10 = subsetFun(Sed10, fun = 'antibiotic', rescale_copy_number = F)
antibiotic11 = subsetFun(Sed11, fun = 'antibiotic', rescale_copy_number = F)
antibiotic12 = subsetFun(Sed12, fun = 'antibiotic', rescale_copy_number = F)
Sed_Antibiotics <- combineSQMlite(antibiotic1, antibiotic2, antibiotic3, antibiotic4, antibiotic5, antibiotic6, antibiotic7, antibiotic8, antibiotic9, antibiotic10, antibiotic11, antibiotic12)
plotTaxonomy(Sed_Antibiotics, rank = 'genus', count = 'percent', base_size = 20)
antibiotic1 = subsetFun(Spore1, fun = 'antibiotic', rescale_copy_number = F)
antibiotic2 = subsetFun(Spore2, fun = 'antibiotic', rescale_copy_number = F)
antibiotic3 = subsetFun(Spore3, fun = 'antibiotic', rescale_copy_number = F)
antibiotic4 = subsetFun(Spore4, fun = 'antibiotic', rescale_copy_number = F)
antibiotic5 = subsetFun(Spore5, fun = 'antibiotic', rescale_copy_number = F)
antibiotic6 = subsetFun(Spore6, fun = 'antibiotic', rescale_copy_number = F)
antibiotic7 = subsetFun(Spore7, fun = 'antibiotic', rescale_copy_number = F)
antibiotic8 = subsetFun(Spore8, fun = 'antibiotic', rescale_copy_number = F)
antibiotic9 = subsetFun(Spore9, fun = 'antibiotic', rescale_copy_number = F)
antibiotic10 = subsetFun(Spore10, fun = 'antibiotic', rescale_copy_number = F)
antibiotic11 = subsetFun(Spore11, fun = 'antibiotic', rescale_copy_number = F)
antibiotic12 = subsetFun(Spore12, fun = 'antibiotic', rescale_copy_number = F)
Spore_Antibiotics <- combineSQMlite(antibiotic1, antibiotic2, antibiotic3, antibiotic4, antibiotic5, antibiotic6, antibiotic7, antibiotic8, antibiotic9, antibiotic10, antibiotic11, antibiotic12)
plotTaxonomy(Spore_Antibiotics, rank = 'genus', count = 'percent', base_size = 20)