First we are going to load our required library for this analysis, which is SQMtools

Since we ran this analysis in sequential mode (one sample at a time), we have output files for each sample run. We now need to combine these samples into a single file using the ‘coimbineSQMlite’ command

We’ll first combine the first 4 sample datasets (which represent a single biological sample)

We’ll now combine the next 4 datasets into the second biological sample for AT340Sed

And finaly the last four datasets into the last biological sample.

ATS Deep Seep

These are the taxa identified for the ATS Deep Seep samples

Kingdom

All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)

plotTaxonomy(All_ATS, rank='superkingdom', count='percent', ignore_unmapped = TRUE)
## Warning in mostAbundant(data, N = N, items = tax, others = others, rescale =
## rescale): N=15 but only 7 items exist. Returning 7 items
## Warning in mostAbundant(data, N = N + rr, items = tax, others = others, : N=16
## but only 7 items exist. Returning 7 items

Phylum

All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)

plotTaxonomy(All_ATS, rank='phylum', count='percent', ignore_unmapped = TRUE)

Class

All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)

plotTaxonomy(All_ATS, rank='class', count='percent', ignore_unmapped = TRUE)

Order

All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)

plotTaxonomy(All_ATS, rank='order', count='percent', ignore_unmapped = TRUE)

Family

All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)

plotTaxonomy(All_ATS, rank='family', count='percent', ignore_unmapped = TRUE)

Species

All_ATS <- combineSQMlite(ATS_Sample_1, ATS_Sample_2, ATS_Sample_3)

plotTaxonomy(All_ATS, rank='species', count='percent', ignore_unmapped = TRUE)

Avery Island Sediment

These are the taxa identified for the Avery Island samples

Kingdom

All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)

plotTaxonomy(All_Sed, rank='superkingdom', count='percent', ignore_unmapped = TRUE)
## Warning in mostAbundant(data, N = N, items = tax, others = others, rescale =
## rescale): N=15 but only 7 items exist. Returning 7 items
## Warning in mostAbundant(data, N = N + rr, items = tax, others = others, : N=16
## but only 7 items exist. Returning 7 items

Phylum

All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)

plotTaxonomy(All_Sed, rank='phylum', count='percent', ignore_unmapped = TRUE)

Genus

All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)

plotTaxonomy(All_Sed, rank='genus', count='percent', ignore_unmapped = TRUE)

Order

All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)

plotTaxonomy(All_Sed, rank='order', count='percent', ignore_unmapped = TRUE)

Family

All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)

plotTaxonomy(All_Sed, rank='family', count='percent', ignore_unmapped = TRUE)

Species

All_Sed <- combineSQMlite(Sed_Sample_1, Sed_Sample_2, Sed_Sample_3)

plotTaxonomy(All_Sed, rank='species', count='percent', ignore_unmapped = TRUE)

Spores Protocol

These are the taxa identified for the Spore protocol samples

Kingdom

All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)

plotTaxonomy(All_Spore, rank='superkingdom', count='percent', ignore_unmapped = TRUE)
## Warning in mostAbundant(data, N = N, items = tax, others = others, rescale =
## rescale): N=15 but only 7 items exist. Returning 7 items
## Warning in mostAbundant(data, N = N + rr, items = tax, others = others, : N=16
## but only 7 items exist. Returning 7 items

Phylum

All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)

plotTaxonomy(All_Spore, rank='phylum', count='percent', ignore_unmapped = TRUE)

Genus

All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)

plotTaxonomy(All_Spore, rank='genus', count='percent', ignore_unmapped = TRUE)

Order

All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)

plotTaxonomy(All_Spore, rank='order', count='percent', ignore_unmapped = TRUE)

Family

All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)

plotTaxonomy(All_Spore, rank='family', count='percent', ignore_unmapped = TRUE)

Species

All_Spore <- combineSQMlite(Spore_Sample_1, Spore_Sample_2, Spore_Sample_3)

plotTaxonomy(All_Spore, rank='species', count='percent', ignore_unmapped = TRUE)

Pathway Analysis

ATS Deep Seep

These are the pathways identified

Kegg Pathways

plotFunctions(All_ATS, fun_level = 'KEGG', count = 'copy_number', N = 8, base_size = 28)

COG Pathways

plotFunctions(All_ATS, fun_level = 'COG', count = 'copy_number', N = 8, base_size = 28)

PFAM Pathways

plotFunctions(All_ATS, fun_level = 'PFAM', count = 'copy_number', N = 8, base_size = 28)

Avery Island Sediment

Kegg Pathways

plotFunctions(All_Sed, fun_level = 'KEGG', count = 'copy_number', N = 8, base_size = 28)

Sediment COG Pathways

plotFunctions(All_Sed, fun_level = 'COG', count = 'copy_number', N = 8, base_size = 28)

PFAM Pathways

plotFunctions(All_Sed, fun_level = 'PFAM', count = 'copy_number', N = 8, base_size = 28)

Spore Protocol

Spore Kegg Pathways

plotFunctions(All_Spore, fun_level = 'PFAM', count = 'tpm', N = 8 , base_size = 28)

COG Pathways

plotFunctions(All_Spore, fun_level = 'COG', count = 'tpm', N = 8, base_size = 28 )

PFAM Pathways

plotFunctions(All_Spore, fun_level = 'COG', count = 'tpm', N = 8, base_size = 28 )

Pathways of interest

Antibiotics

ATS Deep Seep

antibiotic1 = subsetFun(ATS1, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic2 = subsetFun(ATS2, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic3 = subsetFun(ATS3, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic4 = subsetFun(ATS4, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic5 = subsetFun(ATS5, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic6 = subsetFun(ATS6, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic7 = subsetFun(ATS7, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic8 = subsetFun(ATS8, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic9 = subsetFun(ATS9, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic10 = subsetFun(ATS10, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic11 = subsetFun(ATS11, fun = 'antibiotic', rescale_copy_number = F)
antibiotic12 = subsetFun(ATS12, fun = 'antibiotic', rescale_copy_number = F)

ATS_Antibiotics <- combineSQMlite(antibiotic1, antibiotic2, antibiotic3, antibiotic4, antibiotic5, antibiotic6, antibiotic7, antibiotic8, antibiotic9, antibiotic10, antibiotic11, antibiotic12)

plotTaxonomy(ATS_Antibiotics, rank = 'genus', count = 'percent', base_size = 20)

Avery Island Sediment

antibiotic1 = subsetFun(Sed1, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic2 = subsetFun(Sed2, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic3 = subsetFun(Sed3, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic4 = subsetFun(Sed4, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic5 = subsetFun(Sed5, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic6 = subsetFun(Sed6, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic7 = subsetFun(Sed7, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic8 = subsetFun(Sed8, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic9 = subsetFun(Sed9, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic10 = subsetFun(Sed10, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic11 = subsetFun(Sed11, fun = 'antibiotic', rescale_copy_number = F)
antibiotic12 = subsetFun(Sed12, fun = 'antibiotic', rescale_copy_number = F)

Sed_Antibiotics <- combineSQMlite(antibiotic1, antibiotic2, antibiotic3, antibiotic4, antibiotic5, antibiotic6, antibiotic7, antibiotic8, antibiotic9, antibiotic10, antibiotic11, antibiotic12)

plotTaxonomy(Sed_Antibiotics, rank = 'genus', count = 'percent', base_size = 20)

Spore Protocol

antibiotic1 = subsetFun(Spore1, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic2 = subsetFun(Spore2, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic3 = subsetFun(Spore3, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic4 = subsetFun(Spore4, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic5 = subsetFun(Spore5, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic6 = subsetFun(Spore6, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic7 = subsetFun(Spore7, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic8 = subsetFun(Spore8, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic9 = subsetFun(Spore9, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic10 = subsetFun(Spore10, fun = 'antibiotic', rescale_copy_number = F) 
antibiotic11 = subsetFun(Spore11, fun = 'antibiotic', rescale_copy_number = F)
antibiotic12 = subsetFun(Spore12, fun = 'antibiotic', rescale_copy_number = F)

Spore_Antibiotics <- combineSQMlite(antibiotic1, antibiotic2, antibiotic3, antibiotic4, antibiotic5, antibiotic6, antibiotic7, antibiotic8, antibiotic9, antibiotic10, antibiotic11, antibiotic12)

plotTaxonomy(Spore_Antibiotics, rank = 'genus', count = 'percent', base_size = 20)