Aplicar y simular algunas técnicas de conteo para determinar probabilidades.
Las técnicas de conteo son estrategias matemáticas usadas en probabilidad y estadística que permiten determinar el número total de casos o eventos o situaciones a partir de contabilizar cada uno de ellos dentro de un espacio muestral.
El espacio muestral se define con una literal matemática S
Contar cuántas ocasiones existe de un evento dentro de un espacio muestral.
Se tienen cuatro opciones a elegir en un espacio muestral identificada S, ¿Cual es el número de opciones?.
Imaginar que se tienen ciertas opciones ’A, B, C y D para desplazarse de un lugar a otro.
S <- c("A", 'B', 'C', 'D')
n.opciones <- length(S)
paste("El número total de opciones de S es cuatro.", n.opciones)
## [1] "El número total de opciones de S es cuatro. 4"
El principio aditivo significa contar las opciones.
¿En cuántas ocasiones existe A dentro de S?. Una ¿En cuántas ocasiones existe B dentro de S?. Una ¿En cuántas ocasiones existe C dentro de S?. Una.
Imaginar que se acude a una tienda de ropa se pueden elegir algún producto de entre varios de ellos; pantalones, camisas, playeras, zapatos.
Se identifica S nuevamente como espacio muestral que contiene todos los elementos de la muestra.
productos <- c('PANTALON', 'CAMISA', 'PLAYERA', 'ZAPATO')
productos
## [1] "PANTALON" "CAMISA" "PLAYERA" "ZAPATO"
n.productos <- length(productos)
paste("El número total de opciones de productos diferentes es: ", n.productos)
## [1] "El número total de opciones de productos diferentes es: 4"
Combina el principio aditivo con la operación de multiplicación.
Se trata de multiplicar las opciones de un tipo por las opciones de otro tipo y sumar los resultados de cada alternativa.
Se decide ir a una tienda de ropa, se puede adquirir, P Pantalones, C Camisas, P Playeras, Z Zapatos; existe por cada producto marcas de fabricantes específicas. De cada tipo de productos existen diferentes marcas X, Y y Z. De igual forma se puede elegir alguna talla de cualquier marca de algún tipo de productos.
La idea es determinar la cantidad de opciones que se tienen en total utilizando el principio multiplicativo.
¿Cuántas y cuáles opciones existen para elegir un sólo producto diferente?, Es el total de productos. Resp. cuatro opciones, un producto diferente de cada uno.
¿Cuántas opciones se tienen para elegir una marca de pantalón. Resp. tres
¿Cuántas opciones se tienen para elegir una marca de camisa. Resp. tres
¿Cuántas opciones se tienen para elegir una marca de playera. Resp. tres
¿Cuántas opciones se tienen para elegir una marca de zapato. Resp. tres
marcas <- c("X", "Y", "Z")
n.marcas <- length(marcas)
paste("Marcas diferentes a elegir son: ", n.marcas)
## [1] "Marcas diferentes a elegir son: 3"
paste("Alternativas de elegir producto y marca diferente son: ", n.productos * n.marcas)
## [1] "Alternativas de elegir producto y marca diferente son: 12"
Existe variedad en tallas de cada producto diferente, es decir, los pantalones, las camisas y las playeras tienen tallas diferentes, C Chica, M Mediana, G Grande, X Extra Grande:
De los pantalones existe talla C, M y G, son tres tallas
De las camisas existen tallas M y G, son dos tallas
De las playeras existen tallas C, M, G y X, son cuatro tallas
De los zapatos existen medidas 24, 25, 26, 27 y 28 en tallas centímetros., son cinco tallas o medidas.
tallas.PANTALON <- c("C", "M", "G")
tallas.CAMISAS <- c("M", "G")
tallas.PLAYERAS <- c("C", "M", "G", "X")
# Los zapatos tienen medidas particulares
tallas.ZAPATOS <- as.character(c(24:28))
tallas.PANTALON
## [1] "C" "M" "G"
tallas.CAMISAS
## [1] "M" "G"
tallas.PLAYERAS
## [1] "C" "M" "G" "X"
tallas.ZAPATOS
## [1] "24" "25" "26" "27" "28"
¿Cuántas opciones hay en total de elegir un producto distinto de marca diferente y de talla única?.
n.tallas.pantalones <- length(tallas.PANTALON)
n.tallas.camisas <- length(tallas.CAMISAS)
n.tallas.playeras <- length(tallas.PLAYERAS)
n.tallas.zapatos <- length(tallas.ZAPATOS)
n.opciones <- (n.marcas * n.tallas.pantalones) + (n.marcas * n.tallas.camisas) + (n.marcas * n.tallas.playeras) + (n.marcas * n.tallas.zapatos)
paste("Existen varias alternativas de elegir producto, marca y talla diferente, son: ", n.opciones)
## [1] "Existen varias alternativas de elegir producto, marca y talla diferente, son: 42"
\[ opciones = (n.marcas \times n.tallas.pantalones) + (n.marcas \times n.tallas.camisas) + \\ (n.marcas \times n.tallas.playeras) + (n.marcas \times n.tallas.zapatos) \]
\[ (3 \times 3) + (3 \times 2) + \\ (3 \times 4) + (3 \times 5) = 42 \]
Si se multiplica el número de opciones de marcas de cada producto por sus correspondientes tallas y sumando parcialmente cada resultado para determinar finalmente el total de opciones.
Se aplica un principio aditivo y multiplicativo para encontrar la cantidad de opciones y poder elegir un producto de entre todo el espacio muestral S.
¿Que sucede si de entre todos los productos hay alternativas de seleccionar para el género femenino y para el género masculino?
\[ opciones = (n.marcas \times n.tallas.pantalones \times n.generos) + (n.marcas \times n.tallas.camisas\times n.generos) + \\ (n.marcas \times n.tallas.playeras\times n.generos) + (n.marcas \times n.tallas.zapatos\times n.generos) \]
\[ (3 \times 3 \times 2) + (3 \times 2 \times 2) + \\ (3 \times 4 \times 2) + (3 \times 5 \times 2) = 84 \]
Se visualiza todo el espacio muestral S
La función source() permite cargar funciones y scripts, para este ejemplo se carga un script que contiene la construcción del espacio muestral.
La función nrow() devuelve la cantidad de registros u observaciones de un data.frame.
source("https://raw.githubusercontent.com/rpizarrog/Probabilidad-y-EstadIstica-VIRTUAL-DISTANCIA/main/scripts/ESPACIO%20MUESTRAL%20pantalones%20camisas%20playeras%20zapatos.r")
S
## productos marcas tallas generos
## 1 PANTALON X C Femenino
## 2 PANTALON Y C Femenino
## 3 PANTALON Z C Femenino
## 4 PANTALON X M Femenino
## 5 PANTALON Y M Femenino
## 6 PANTALON Z M Femenino
## 7 PANTALON X G Femenino
## 8 PANTALON Y G Femenino
## 9 PANTALON Z G Femenino
## 10 PANTALON X C Masculino
## 11 PANTALON Y C Masculino
## 12 PANTALON Z C Masculino
## 13 PANTALON X M Masculino
## 14 PANTALON Y M Masculino
## 15 PANTALON Z M Masculino
## 16 PANTALON X G Masculino
## 17 PANTALON Y G Masculino
## 18 PANTALON Z G Masculino
## 19 CAMISA X M Femenino
## 20 CAMISA Y M Femenino
## 21 CAMISA Z M Femenino
## 22 CAMISA X G Femenino
## 23 CAMISA Y G Femenino
## 24 CAMISA Z G Femenino
## 25 CAMISA X M Masculino
## 26 CAMISA Y M Masculino
## 27 CAMISA Z M Masculino
## 28 CAMISA X G Masculino
## 29 CAMISA Y G Masculino
## 30 CAMISA Z G Masculino
## 31 PLAYERA X C Femenino
## 32 PLAYERA Y C Femenino
## 33 PLAYERA Z C Femenino
## 34 PLAYERA X M Femenino
## 35 PLAYERA Y M Femenino
## 36 PLAYERA Z M Femenino
## 37 PLAYERA X G Femenino
## 38 PLAYERA Y G Femenino
## 39 PLAYERA Z G Femenino
## 40 PLAYERA X X Femenino
## 41 PLAYERA Y X Femenino
## 42 PLAYERA Z X Femenino
## 43 PLAYERA X C Masculino
## 44 PLAYERA Y C Masculino
## 45 PLAYERA Z C Masculino
## 46 PLAYERA X M Masculino
## 47 PLAYERA Y M Masculino
## 48 PLAYERA Z M Masculino
## 49 PLAYERA X G Masculino
## 50 PLAYERA Y G Masculino
## 51 PLAYERA Z G Masculino
## 52 PLAYERA X X Masculino
## 53 PLAYERA Y X Masculino
## 54 PLAYERA Z X Masculino
## 55 ZAPATO X 24 Femenino
## 56 ZAPATO Y 24 Femenino
## 57 ZAPATO Z 24 Femenino
## 58 ZAPATO X 25 Femenino
## 59 ZAPATO Y 25 Femenino
## 60 ZAPATO Z 25 Femenino
## 61 ZAPATO X 26 Femenino
## 62 ZAPATO Y 26 Femenino
## 63 ZAPATO Z 26 Femenino
## 64 ZAPATO X 27 Femenino
## 65 ZAPATO Y 27 Femenino
## 66 ZAPATO Z 27 Femenino
## 67 ZAPATO X 28 Femenino
## 68 ZAPATO Y 28 Femenino
## 69 ZAPATO Z 28 Femenino
## 70 ZAPATO X 24 Masculino
## 71 ZAPATO Y 24 Masculino
## 72 ZAPATO Z 24 Masculino
## 73 ZAPATO X 25 Masculino
## 74 ZAPATO Y 25 Masculino
## 75 ZAPATO Z 25 Masculino
## 76 ZAPATO X 26 Masculino
## 77 ZAPATO Y 26 Masculino
## 78 ZAPATO Z 26 Masculino
## 79 ZAPATO X 27 Masculino
## 80 ZAPATO Y 27 Masculino
## 81 ZAPATO Z 27 Masculino
## 82 ZAPATO X 28 Masculino
## 83 ZAPATO Y 28 Masculino
## 84 ZAPATO Z 28 Masculino
N <- nrow(S) # nrow determina la cantidad de observaciones
En caso de que hubiese sólo un artículo de cada tipo de producto de cada marca de cada talla.
producto <- "PANTALON"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 1 PANTALON X C Femenino
## 2 PANTALON Y C Femenino
## 3 PANTALON Z C Femenino
## 4 PANTALON X M Femenino
## 5 PANTALON Y M Femenino
## 6 PANTALON Z M Femenino
## 7 PANTALON X G Femenino
## 8 PANTALON Y G Femenino
## 9 PANTALON Z G Femenino
## 10 PANTALON X C Masculino
## 11 PANTALON Y C Masculino
## 12 PANTALON Z C Masculino
## 13 PANTALON X M Masculino
## 14 PANTALON Y M Masculino
## 15 PANTALON Z M Masculino
## 16 PANTALON X G Masculino
## 17 PANTALON Y G Masculino
## 18 PANTALON Z G Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 18 opciones de elegir un(a) PANTALON de entre todo el espacio muestral , representan 0.2143 o sea 21.43 % del total del espacio muestral"
producto <- "CAMISA"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 19 CAMISA X M Femenino
## 20 CAMISA Y M Femenino
## 21 CAMISA Z M Femenino
## 22 CAMISA X G Femenino
## 23 CAMISA Y G Femenino
## 24 CAMISA Z G Femenino
## 25 CAMISA X M Masculino
## 26 CAMISA Y M Masculino
## 27 CAMISA Z M Masculino
## 28 CAMISA X G Masculino
## 29 CAMISA Y G Masculino
## 30 CAMISA Z G Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 12 opciones de elegir un(a) CAMISA de entre todo el espacio muestral , representan 0.1429 o sea 14.29 % del total del espacio muestral"
producto <- "PLAYERA"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 31 PLAYERA X C Femenino
## 32 PLAYERA Y C Femenino
## 33 PLAYERA Z C Femenino
## 34 PLAYERA X M Femenino
## 35 PLAYERA Y M Femenino
## 36 PLAYERA Z M Femenino
## 37 PLAYERA X G Femenino
## 38 PLAYERA Y G Femenino
## 39 PLAYERA Z G Femenino
## 40 PLAYERA X X Femenino
## 41 PLAYERA Y X Femenino
## 42 PLAYERA Z X Femenino
## 43 PLAYERA X C Masculino
## 44 PLAYERA Y C Masculino
## 45 PLAYERA Z C Masculino
## 46 PLAYERA X M Masculino
## 47 PLAYERA Y M Masculino
## 48 PLAYERA Z M Masculino
## 49 PLAYERA X G Masculino
## 50 PLAYERA Y G Masculino
## 51 PLAYERA Z G Masculino
## 52 PLAYERA X X Masculino
## 53 PLAYERA Y X Masculino
## 54 PLAYERA Z X Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 24 opciones de elegir un(a) PLAYERA de entre todo el espacio muestral , representan 0.2857 o sea 28.57 % del total del espacio muestral"
producto <- "ZAPATO"
productos <- subset(S, productos == producto)
productos
## productos marcas tallas generos
## 55 ZAPATO X 24 Femenino
## 56 ZAPATO Y 24 Femenino
## 57 ZAPATO Z 24 Femenino
## 58 ZAPATO X 25 Femenino
## 59 ZAPATO Y 25 Femenino
## 60 ZAPATO Z 25 Femenino
## 61 ZAPATO X 26 Femenino
## 62 ZAPATO Y 26 Femenino
## 63 ZAPATO Z 26 Femenino
## 64 ZAPATO X 27 Femenino
## 65 ZAPATO Y 27 Femenino
## 66 ZAPATO Z 27 Femenino
## 67 ZAPATO X 28 Femenino
## 68 ZAPATO Y 28 Femenino
## 69 ZAPATO Z 28 Femenino
## 70 ZAPATO X 24 Masculino
## 71 ZAPATO Y 24 Masculino
## 72 ZAPATO Z 24 Masculino
## 73 ZAPATO X 25 Masculino
## 74 ZAPATO Y 25 Masculino
## 75 ZAPATO Z 25 Masculino
## 76 ZAPATO X 26 Masculino
## 77 ZAPATO Y 26 Masculino
## 78 ZAPATO Z 26 Masculino
## 79 ZAPATO X 27 Masculino
## 80 ZAPATO Y 27 Masculino
## 81 ZAPATO Z 27 Masculino
## 82 ZAPATO X 28 Masculino
## 83 ZAPATO Y 28 Masculino
## 84 ZAPATO Z 28 Masculino
n.productos <- nrow(productos)
paste("Existen ", n.productos, " opciones de elegir un(a) ", producto, " de entre todo el espacio muestral", ", representan ", round(n.productos / N,4), " o sea ", round(n.productos / N * 100, 2), "% del total del espacio muestral")
## [1] "Existen 30 opciones de elegir un(a) ZAPATO de entre todo el espacio muestral , representan 0.3571 o sea 35.71 % del total del espacio muestral"
Es una representación gráfica que permite representar probabilidades de un espacio muestral.
La suma de las frecuencias debe ser el total de los productos.
La suma de las frecuencias relativas o probabilidades relativas debe ser 1.
La suma de las probabilidades en valores % debe ser 100%.
Son ideas personales de los participantes, alumnos sobre lo que se desarrolla, a que conclusiones llegan.
De las preguntas 1 a 3, conteste descriptiva y narrativa, de las preguntas 4 en adelante realice el cálculo de probabilidades y muestre los resultados como lo indica la pregunta 4.
¿Para que sirven técnicas de conteo aditivas y multiplicativas? ambas son técnicas estadísticas que no facilitan la tarea de resolver problemas sin tener que enumerar todos los elementos que se puedan llegar a presentar, las técnicas aditivas nos permite saber de cuantas maneras va a ocurrir un evento, las alternativas que hay para realizarlo de las cuales solo se puede elegir una a la vez , mientras que las multiplicativas se encargan de multiplicar de manera sucesiva para determinar de que forma puede ocurrir un evento y determinar las múltiples combinaciones que se pueden realizar.
Que representa un diagrama de árbol en términos de probabilidad? es un diagrama con ramas como su nombre lo indica el cual muestra los resultados de algún evento, este se desglosa dándonos diversas combinaciones y/o resultados.
¿Cómo determinar probabilidades? se dividen el numero de casos favorables entre los casos posibles y si se desea obtener el resultado en porcentaje se multiplica el resultado de la división por 100.
¿Cuántas y cuáles ocasiones existen para elegir un producto que sea pantalón y del género Femenino?, ¿cuál es su probabilidad? son 9 ocasiones de 84 y su probabilidad es de 10.71%.
¿Cuál es la probabilidad de elegir una playera del género Masculino de talla G? si hablamos del porcentaje respecto a todos los productos obtenemos que el porcentaje es de 3.57%, mientras que si solo hablamos de las playeras hay un 12.5% de probabilidad que se seleccione una playera G del genero masculino.
¿Cuál es la probabilidad de elegir una camisa del género Femenino talla CH? no existe probabilidad alguna ya que las camisas solo cuentan con talla M y G.
Existe probabilidad de elegir unos zapatos del número 22 o talla 22? Tampoco hay probabilidad ya que las tallas se manejan desde el numero 24 hasta el 28.