Goals of these analyses: Start fitting IRT models to large datasets of 2AFC picture matching tasks Are kids and adults similar in their item parameters? Which items are good and should be included going forward? Does estimated theta (i.e., latent ability) from the models track with age?
To do based on meeting: 1. Get rid of bad items 2. Get rid of items without data 3. Get rid of people who are low performing (Slightly overfit this dataset)
Look at model fit statistics for 2PL and PC2PL Further item refinement –
Then look at thetas in the subpopulations
(next steps) Any other sociodemographics that we have? (what do we have) Are there DIF items for ELLs? Do we see the different distractor items (from DAVIT or CLIP) ordering in terms of difficulty in their item parameters?
library(tidyverse)
library(here)
library(lubridate)
library(ggthemes)
library(langcog)
library(mirt)
library(knitr)
pilot_data_cdm <- read_csv(file = here::here('data/cdm_data/cdm-trials-022123.csv')) %>%
mutate(cohort = 'cdm')
demo_data <- read_csv(file = here::here('data/demo_data/demo-trials-012223.csv')) %>%
mutate(cohort = 'demo')
school_data <- read_csv(file = here::here('data/rocketship_data/school-trials-022223.csv')) %>%
mutate(cohort = 'school')
prolific_data <- read_csv(file = here::here('data/adult_prolific_pilot_preprocessed/prolific_data_preprocessed.csv')) %>%
mutate(cohort = 'prolific') %>%
mutate(pid = sub_id) %>%
mutate(age = 'Adult') %>%
mutate(response = 3) # for merging correctly later since preprocessed
users <- read_csv(file = here::here('data/cdm_data/prod_roar-prod_tasks_vocab_users.csv')) %>%
select(age,id,ell)
pilot_data <- pilot_data_cdm %>%
full_join(demo_data) %>%
full_join(school_data) %>%
left_join(users %>% select(age, id, ell), by=c('pid' = 'id')) %>%
full_join(prolific_data)
catch_exclude <- pilot_data %>%
filter(response>0) %>%
filter(wordPairing == 'catch') %>%
group_by(pid, start_time) %>%
summarize(percent_correct = mean(correct), num_completed = n()) %>%
filter(percent_correct<.5)
catch_exclude_filtered <- pilot_data %>%
filter(pid %in% catch_exclude$pid) %>%
distinct(age,pid,cohort) %>%
group_by(cohort,age) %>%
summarize(num_subs = length(pid))
catch_exclude_filtered %>%
kable()
| cohort | age | num_subs |
|---|---|---|
| cdm | 2 | 21 |
| cdm | 3 | 8 |
| cdm | 4 | 2 |
| cdm | 5 | 3 |
| cdm | 6 | 2 |
| cdm | 8 | 2 |
| cdm | Adult | 3 |
| demo | 3 | 1 |
| demo | 5 | 1 |
| demo | Adult | 6 |
| school | NA | 36 |
rocketship_by_kid <- school_data %>%
group_by(pid) %>%
summarize(prop_correct = mean(correct))
hist(rocketship_by_kid$prop_correct)
low_acc_exclude <- pilot_data %>%
filter(response>0) %>%
group_by(pid) %>%
filter(!wordPairing %in% c('catch','practice')) %>%
summarize(percent_correct = mean(correct)) %>%
filter(percent_correct<.5)
high_acc_exclude <- pilot_data %>%
filter(response>0) %>%
group_by(pid) %>%
filter(!wordPairing %in% c('catch','practice')) %>%
summarize(percent_correct = mean(correct)) %>%
filter(percent_correct==1)
low_acc_filtered_subs <- pilot_data %>%
filter(pid %in% low_acc_exclude$pid) %>%
distinct(age,pid,cohort) %>%
group_by(cohort,age) %>%
summarize(num_subs = length(pid))
low_acc_filtered_subs %>%
kable()
| cohort | age | num_subs |
|---|---|---|
| cdm | 2 | 16 |
| cdm | 3 | 5 |
| cdm | 4 | 2 |
| cdm | 5 | 1 |
| cdm | 6 | 4 |
| cdm | 7 | 1 |
| cdm | 8 | 1 |
| cdm | Adult | 3 |
| demo | 3 | 1 |
| demo | 5 | 1 |
| demo | Adult | 3 |
| school | NA | 26 |
pilot_data_filtered <- pilot_data %>%
filter(response>0) %>%
filter(!wordPairing %in% c('catch','practice')) %>%
filter(!pid %in% catch_exclude$pid) %>%
filter(!pid %in% low_acc_exclude$pid)
pilot_data_experimental <- school_data %>%
mutate(age = '9') %>%
# left_join(users %>% select(age, id, ell), by=c('pid' = 'id')) %>%
full_join(prolific_data)
pilot_data_experimental_filtered <- pilot_data_experimental %>%
filter(response>0) %>%
filter(!wordPairing %in% c('catch','practice')) %>%
filter(!pid %in% catch_exclude$pid) %>%
filter(!pid %in% low_acc_exclude$pid)
Item-pair - word1/word2 Basic adult vs. kid classification for initial models
pilot_data_filtered <- pilot_data_filtered %>%
mutate(kid_or_adult = case_when(age == 'Adult' ~ 'Adult',
age != 'Adult' ~ 'Child',
is.na(age) == TRUE ~ 'Child')) %>%
mutate(item_pair = paste0(word1,'_', word2)) %>%
mutate(sub_id = pid)
pilot_data_experimental_filtered <- pilot_data_experimental_filtered %>%
mutate(kid_or_adult = case_when(age == 'Adult' ~ 'Adult',
age != 'Adult' ~ 'Child',
is.na(age) == TRUE ~ 'Child')) %>%
mutate(item_pair = paste0(word1,'_', word2)) %>%
mutate(sub_id = pid)
pilot_data_filtered %>%
group_by(cohort) %>%
summarize(num_subs = length(unique(pid)),total_trials = sum(length(trialId))) %>%
kable()
| cohort | num_subs | total_trials |
|---|---|---|
| cdm | 301 | 9417 |
| demo | 719 | 29745 |
| prolific | 191 | 25785 |
| school | 1610 | 74661 |
pilot_data_filtered %>%
filter(age == 'Adult') %>%
group_by(cohort) %>%
summarize(num_subs = length(unique(pid)),total_trials = sum(length(trialId))) %>%
kable()
| cohort | num_subs | total_trials |
|---|---|---|
| cdm | 22 | 555 |
| demo | 679 | 28063 |
| prolific | 191 | 25785 |
pilot_data_filtered %>%
# filter(kid_or_adult == 'Child') %>%
mutate(age_numeric = as.numeric(age)) %>%
group_by(cohort,age) %>%
summarize(num_subs = length(unique(pid)),avg_age = mean(age_numeric, na.rm=TRUE), total_trials = sum(length(trialId))) %>%
kable()
| cohort | age | num_subs | avg_age | total_trials |
|---|---|---|---|---|
| cdm | 10+ | 16 | NaN | 513 |
| cdm | 2 | 51 | 2 | 1277 |
| cdm | 3 | 55 | 3 | 1867 |
| cdm | 4 | 48 | 4 | 1480 |
| cdm | 5 | 39 | 5 | 1368 |
| cdm | 6 | 32 | 6 | 1039 |
| cdm | 7 | 21 | 7 | 648 |
| cdm | 8 | 10 | 8 | 377 |
| cdm | 9 | 6 | 9 | 251 |
| cdm | Adult | 22 | NaN | 555 |
| cdm | NA | 1 | NaN | 42 |
| demo | 10+ | 14 | NaN | 630 |
| demo | 5 | 8 | 5 | 360 |
| demo | 6 | 1 | 6 | 45 |
| demo | 7 | 3 | 7 | 135 |
| demo | 8 | 2 | 8 | 60 |
| demo | 9 | 1 | 9 | 45 |
| demo | Adult | 679 | NaN | 28063 |
| demo | NA | 11 | NaN | 407 |
| prolific | Adult | 191 | NaN | 25785 |
| school | NA | 1610 | NaN | 74661 |
by_cohort_experimental <- pilot_data_experimental_filtered %>%
group_by(cohort) %>%
summarize(num_subs = length(unique(pid)),total_trials = sum(length(trialId)))
kid_vs_adult <- pilot_data_filtered %>%
group_by(kid_or_adult) %>%
summarize(num_subs = length(unique(pid)), total_trials = sum(length(trialId)))
by_kid <- pilot_data_filtered %>%
group_by(pid, cohort) %>%
summarize(prop_correct = mean(correct))
ggplot(data=by_kid, aes(x=cohort, y=prop_correct, color=cohort)) +
geom_jitter(width=.2, height=.02, alpha=.4) +
theme_few() +
geom_hline(yintercept=.5)
Calculate which items are at ceiling for kicking out of models
item_by_cohort <- pilot_data_filtered %>%
group_by(kid_or_adult, item_pair) %>%
summarize(num_responses = length(correct), pc = mean(correct)) %>%
group_by(item_pair) %>%
mutate(both_kids_and_adults = length(unique(kid_or_adult)))
item_all_responses <- pilot_data_filtered %>%
group_by(item_pair) %>%
summarize(num_responses = length(correct), pc = mean(correct))
ceiling = item_by_cohort %>%
filter(pc==1)
not_enough_data = item_by_cohort %>%
filter(both_kids_and_adults==1)
not_enough_responses = item_by_cohort %>%
filter(num_responses<50)
bad_items <- ceiling %>%
full_join(not_enough_responses %>% select(item_pair)) %>%
full_join(not_enough_data %>% select(item_pair)) %>%
distinct(item_pair)
There are 101 items that were eliminated because adults were at ceiling.
There are 0 items that were eliminated because we didn’t have data in both cohorts.
There are 123 items that were eliminated because we had less than 50 data point in a given cohort.
This led to a total of 157 UNIQUE items that were eliminated.
items_included <- item_by_cohort %>%
ungroup() %>%
filter(!item_pair %in% bad_items$item_pair) %>%
distinct(item_pair)
length(unique(items_included$item_pair))
## [1] 236
There are 236 items included across both cohorts that are not at ceiling.
pilot_data_irt_subset <- pilot_data_filtered %>%
ungroup() %>%
filter(!item_pair %in% bad_items$item_pair)
length(unique(pilot_data_irt_subset$item_pair))
## [1] 236
d_wide_kid<- pilot_data_irt_subset %>%
ungroup() %>%
filter(kid_or_adult == 'Child') %>%
select(sub_id, item_pair, correct) %>%
arrange(item_pair) %>%
ungroup() %>%
pivot_wider(names_from=item_pair, values_from=correct, values_fn = ~mean(.x)) %>%
ungroup()
d_mat_kid <- d_wide_kid %>%
select(-sub_id) %>%
data.frame %>%
data.matrix
rownames(d_mat_kid) <- d_wide_kid$sub_id
assertthat::assert_that(dim(d_mat_kid)[2]==length(items_included$item_pair))
## [1] TRUE
d_wide_adult<- pilot_data_irt_subset %>%
ungroup() %>%
filter(kid_or_adult == 'Adult') %>%
select(sub_id, item_pair, correct) %>%
arrange(item_pair) %>%
ungroup() %>%
pivot_wider(names_from=item_pair, values_from=correct, values_fn = ~mean(.x)) %>%
ungroup()
d_mat_adult <- d_wide_adult %>%
select(-sub_id) %>%
data.frame %>%
data.matrix
rownames(d_mat_adult) <- d_wide_adult$sub_id
assertthat::assert_that(dim(d_mat_adult)[2]==length(items_included$item_pair))
## [1] TRUE
d_wide_all_data_and_subs <- pilot_data_filtered %>%
ungroup() %>%
select(sub_id, item_pair, correct) %>%
arrange(item_pair) %>%
ungroup() %>%
pivot_wider(names_from=item_pair, values_from=correct, values_fn = ~mean(.x)) %>%
ungroup()
d_mat_all_data_and_subs <- d_wide_all_data_and_subs %>%
select(-sub_id) %>%
data.frame %>%
data.matrix
rownames(d_mat_all_data_and_subs) <- d_wide_all_data_and_subs$sub_id
# assertthat::assert_that(dim(d_mat_adult)[2]==length(items_included$item_pair))
mod_1pl_kid <- mirt::mirt(d_mat_kid, 1, itemtype='Rasch',guess=.5, verbose=TRUE)
##
Iteration: 1, Log-Lik: -28889.377, Max-Change: 9.37609
Iteration: 2, Log-Lik: -22000.348, Max-Change: 2.32462
Iteration: 3, Log-Lik: -21682.691, Max-Change: 1.70471
Iteration: 4, Log-Lik: -21549.511, Max-Change: 1.63326
Iteration: 5, Log-Lik: -21459.356, Max-Change: 1.36244
Iteration: 6, Log-Lik: -21388.191, Max-Change: 0.84180
Iteration: 7, Log-Lik: -21329.389, Max-Change: 0.41738
Iteration: 8, Log-Lik: -21280.613, Max-Change: 0.41190
Iteration: 9, Log-Lik: -21240.867, Max-Change: 0.57415
Iteration: 10, Log-Lik: -21209.313, Max-Change: 0.39874
Iteration: 11, Log-Lik: -21185.042, Max-Change: 0.64918
Iteration: 12, Log-Lik: -21166.870, Max-Change: 0.23597
Iteration: 13, Log-Lik: -21153.710, Max-Change: 0.82459
Iteration: 14, Log-Lik: -21144.441, Max-Change: 0.36367
Iteration: 15, Log-Lik: -21138.115, Max-Change: 0.51702
Iteration: 16, Log-Lik: -21133.895, Max-Change: 0.11862
Iteration: 17, Log-Lik: -21131.148, Max-Change: 0.25402
Iteration: 18, Log-Lik: -21129.395, Max-Change: 0.04464
Iteration: 19, Log-Lik: -21128.331, Max-Change: 1.24544
Iteration: 20, Log-Lik: -21127.638, Max-Change: 0.08023
Iteration: 21, Log-Lik: -21127.220, Max-Change: 0.05459
Iteration: 22, Log-Lik: -21126.688, Max-Change: 0.02901
Iteration: 23, Log-Lik: -21126.648, Max-Change: 0.01282
Iteration: 24, Log-Lik: -21126.644, Max-Change: 0.00879
Iteration: 25, Log-Lik: -21126.643, Max-Change: 0.01182
Iteration: 26, Log-Lik: -21126.649, Max-Change: 0.00420
Iteration: 27, Log-Lik: -21126.656, Max-Change: 0.00286
Iteration: 28, Log-Lik: -21126.661, Max-Change: 0.00276
Iteration: 29, Log-Lik: -21126.666, Max-Change: 0.00133
Iteration: 30, Log-Lik: -21126.668, Max-Change: 0.00084
Iteration: 31, Log-Lik: -21126.670, Max-Change: 0.00123
Iteration: 32, Log-Lik: -21126.673, Max-Change: 0.00044
Iteration: 33, Log-Lik: -21126.673, Max-Change: 0.00029
Iteration: 34, Log-Lik: -21126.674, Max-Change: 0.00022
Iteration: 35, Log-Lik: -21126.675, Max-Change: 0.00009
mod_1pl_adult <- mirt::mirt(d_mat_adult, 1, itemtype='Rasch',guess=.5, verbose=TRUE)
##
Iteration: 1, Log-Lik: -7387.302, Max-Change: 5.59298
Iteration: 2, Log-Lik: -6394.091, Max-Change: 3.76600
Iteration: 3, Log-Lik: -6353.737, Max-Change: 4.95714
Iteration: 4, Log-Lik: -6344.553, Max-Change: 0.32909
Iteration: 5, Log-Lik: -6340.239, Max-Change: 0.51562
Iteration: 6, Log-Lik: -6337.310, Max-Change: 0.09977
Iteration: 7, Log-Lik: -6333.911, Max-Change: 0.13192
Iteration: 8, Log-Lik: -6332.304, Max-Change: 0.10465
Iteration: 9, Log-Lik: -6330.934, Max-Change: 0.09068
Iteration: 10, Log-Lik: -6327.137, Max-Change: 0.25364
Iteration: 11, Log-Lik: -6326.141, Max-Change: 0.11176
Iteration: 12, Log-Lik: -6325.984, Max-Change: 0.06547
Iteration: 13, Log-Lik: -6325.720, Max-Change: 0.07460
Iteration: 14, Log-Lik: -6325.723, Max-Change: 0.03726
Iteration: 15, Log-Lik: -6325.747, Max-Change: 0.02517
Iteration: 16, Log-Lik: -6325.678, Max-Change: 0.05004
Iteration: 17, Log-Lik: -6325.750, Max-Change: 0.02196
Iteration: 18, Log-Lik: -6325.807, Max-Change: 0.01296
Iteration: 19, Log-Lik: -6325.838, Max-Change: 0.01236
Iteration: 20, Log-Lik: -6325.875, Max-Change: 0.00696
Iteration: 21, Log-Lik: -6325.897, Max-Change: 0.00494
Iteration: 22, Log-Lik: -6325.909, Max-Change: 0.00999
Iteration: 23, Log-Lik: -6325.942, Max-Change: 0.00445
Iteration: 24, Log-Lik: -6325.958, Max-Change: 0.00260
Iteration: 25, Log-Lik: -6325.967, Max-Change: 0.00230
Iteration: 26, Log-Lik: -6325.975, Max-Change: 0.00132
Iteration: 27, Log-Lik: -6325.980, Max-Change: 0.00100
Iteration: 28, Log-Lik: -6325.984, Max-Change: 0.00199
Iteration: 29, Log-Lik: -6325.991, Max-Change: 0.00082
Iteration: 30, Log-Lik: -6325.994, Max-Change: 0.00056
Iteration: 31, Log-Lik: -6325.996, Max-Change: 0.00045
Iteration: 32, Log-Lik: -6325.998, Max-Change: 0.00047
Iteration: 33, Log-Lik: -6325.999, Max-Change: 0.00023
Iteration: 34, Log-Lik: -6326.000, Max-Change: 0.00028
Iteration: 35, Log-Lik: -6326.001, Max-Change: 0.00017
Iteration: 36, Log-Lik: -6326.002, Max-Change: 0.00020
Iteration: 37, Log-Lik: -6326.002, Max-Change: 0.00023
Iteration: 38, Log-Lik: -6326.002, Max-Change: 0.00012
Iteration: 39, Log-Lik: -6326.003, Max-Change: 0.00011
Iteration: 40, Log-Lik: -6326.003, Max-Change: 0.00010
coefs_rasch_kid <- as_data_frame(coef(mod_1pl_kid, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_1pl_kid, simplify = TRUE)$items))
coefs_rasch_adults <- as_data_frame(coef(mod_1pl_adult, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_1pl_adult, simplify = TRUE)$items))
coefs <- coefs_rasch_adults %>%
select(d, item_pair) %>%
mutate(cohort = 'adults') %>%
full_join(coefs_rasch_kid %>% select(d, item_pair) %>% mutate(cohort = 'kid')) %>%
pivot_wider(names_from = cohort, values_from = d) %>%
mutate(differences = adults-kid)
ggplot(data = coefs, aes(x=adults, y=kid)) +
geom_point(alpha=.8) +
geom_smooth(method='lm', color='grey') +
theme_few() +
ggrepel::geom_label_repel(aes(label = item_pair))
cor.test(coefs$adults, coefs$kid)
##
## Pearson's product-moment correlation
##
## data: coefs$adults and coefs$kid
## t = 15.328, df = 234, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6377760 0.7662657
## sample estimates:
## cor
## 0.7078279
These models don’t converge without specifying some priors, not sure about these!
start.dim = length(colnames(d_wide_kid))-1
mm = (
'F = 1-%d,
PRIOR = (1-%d, a1, norm, .2, 1),
PRIOR = (1-%d, d, norm, 0, 2)'
)
mm = mirt.model(sprintf(mm,start.dim,start.dim,start.dim))
mod_2pl_priors_kid <- mirt::mirt(d_mat_kid, mm, itemtype='2PL',guess=.5, upper=1, verbose=TRUE)
##
Iteration: 1, Log-Lik: -27726.870, Max-Change: 4.00859
Iteration: 2, Log-Lik: -22390.923, Max-Change: 1.25315
Iteration: 3, Log-Lik: -21984.948, Max-Change: 0.59355
Iteration: 4, Log-Lik: -21897.720, Max-Change: 0.28450
Iteration: 5, Log-Lik: -21879.529, Max-Change: 0.14795
Iteration: 6, Log-Lik: -21875.311, Max-Change: 0.08107
Iteration: 7, Log-Lik: -21874.225, Max-Change: 0.04673
Iteration: 8, Log-Lik: -21873.913, Max-Change: 0.03159
Iteration: 9, Log-Lik: -21873.816, Max-Change: 0.02214
Iteration: 10, Log-Lik: -21873.769, Max-Change: 0.00885
Iteration: 11, Log-Lik: -21873.760, Max-Change: 0.00413
Iteration: 12, Log-Lik: -21873.757, Max-Change: 0.00300
Iteration: 13, Log-Lik: -21873.755, Max-Change: 0.00056
Iteration: 14, Log-Lik: -21873.754, Max-Change: 0.00055
Iteration: 15, Log-Lik: -21873.754, Max-Change: 0.00261
Iteration: 16, Log-Lik: -21873.754, Max-Change: 0.00174
Iteration: 17, Log-Lik: -21873.754, Max-Change: 0.00026
Iteration: 18, Log-Lik: -21873.754, Max-Change: 0.00131
Iteration: 19, Log-Lik: -21873.754, Max-Change: 0.00021
Iteration: 20, Log-Lik: -21873.754, Max-Change: 0.00018
Iteration: 21, Log-Lik: -21873.754, Max-Change: 0.00085
Iteration: 22, Log-Lik: -21873.754, Max-Change: 0.00011
Iteration: 23, Log-Lik: -21873.754, Max-Change: 0.00056
Iteration: 24, Log-Lik: -21873.754, Max-Change: 0.00010
mod_2pl_priors_adult <- mirt::mirt(d_mat_adult, mm, itemtype='2PL',guess=.5, upper=1, verbose=TRUE)
##
Iteration: 1, Log-Lik: -15034.924, Max-Change: 10.76019
Iteration: 2, Log-Lik: -7800.818, Max-Change: 6.61617
Iteration: 3, Log-Lik: -7424.745, Max-Change: 0.73782
Iteration: 4, Log-Lik: -7340.682, Max-Change: 0.29459
Iteration: 5, Log-Lik: -7314.637, Max-Change: 0.19030
Iteration: 6, Log-Lik: -7304.752, Max-Change: 0.12414
Iteration: 7, Log-Lik: -7300.532, Max-Change: 0.07922
Iteration: 8, Log-Lik: -7298.616, Max-Change: 0.05502
Iteration: 9, Log-Lik: -7297.709, Max-Change: 0.03993
Iteration: 10, Log-Lik: -7296.980, Max-Change: 0.01975
Iteration: 11, Log-Lik: -7296.917, Max-Change: 0.01342
Iteration: 12, Log-Lik: -7296.886, Max-Change: 0.00819
Iteration: 13, Log-Lik: -7296.858, Max-Change: 0.00593
Iteration: 14, Log-Lik: -7296.857, Max-Change: 0.00092
Iteration: 15, Log-Lik: -7296.856, Max-Change: 0.00069
Iteration: 16, Log-Lik: -7296.856, Max-Change: 0.00054
Iteration: 17, Log-Lik: -7296.856, Max-Change: 0.00038
Iteration: 18, Log-Lik: -7296.856, Max-Change: 0.00031
Iteration: 19, Log-Lik: -7296.856, Max-Change: 0.00090
Iteration: 20, Log-Lik: -7296.856, Max-Change: 0.00022
Iteration: 21, Log-Lik: -7296.856, Max-Change: 0.00065
Iteration: 22, Log-Lik: -7296.856, Max-Change: 0.00030
Iteration: 23, Log-Lik: -7296.856, Max-Change: 0.00064
Iteration: 24, Log-Lik: -7296.856, Max-Change: 0.00022
Iteration: 25, Log-Lik: -7296.856, Max-Change: 0.00019
Iteration: 26, Log-Lik: -7296.856, Max-Change: 0.00007
coefs_2pl_kid <- as_data_frame(coef(mod_2pl_priors_kid, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_2pl_priors_kid, simplify = TRUE)$items))
coefs_2pl_adults <- as_data_frame(coef(mod_2pl_priors_adult, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_2pl_priors_adult, simplify = TRUE)$items))
coefs_2pl <- coefs_2pl_adults %>%
select(d, item_pair) %>%
mutate(cohort = 'adults') %>%
full_join(coefs_2pl_kid %>% select(d, item_pair) %>% mutate(cohort = 'kid')) %>%
pivot_wider(names_from = cohort, values_from = d) %>%
mutate(differences = adults-kid)
coefs_a1_2pl <- coefs_2pl_adults %>%
select(a1, item_pair) %>%
mutate(cohort = 'adults') %>%
full_join(coefs_2pl_kid %>% select(a1, item_pair) %>% mutate(cohort = 'kid')) %>%
pivot_wider(names_from = cohort, values_from = a1) %>%
mutate(differences = adults-kid)
ggplot(data = coefs_2pl, aes(x=adults, y=kid)) +
geom_point(alpha=.8) +
geom_smooth(method='lm', color='grey') +
theme_few() +
ggtitle('Adult vs. Kid - 2pl IRT model coefficients - difficulty') +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps=20)
### Compute correlation for difficulty
cor.test(coefs_2pl_adults$d, coefs_2pl_kid$d)
##
## Pearson's product-moment correlation
##
## data: coefs_2pl_adults$d and coefs_2pl_kid$d
## t = 12.337, df = 234, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5436467 0.6993978
## sample estimates:
## cor
## 0.6277652
ggplot(data = coefs_a1_2pl, aes(x=adults, y=kid)) +
geom_point(alpha=.8) +
geom_smooth(method='lm', color='grey') +
theme_few() +
ggtitle('Adult vs. Kid - 2pl IRT model coefficients - discriminability (slopes)') +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps = 15)
ggplot(data = coefs_a1_2pl %>% filter(adults < 1), aes(x=adults, y=kid)) +
geom_point(alpha=.8) +
geom_smooth(method='lm', color='grey') +
theme_few() +
ggtitle('Low discrim items for adults)') +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps = 12)
ggplot(data = coefs_a1_2pl %>% filter(kid < 1), aes(x=adults, y=kid)) +
geom_point(alpha=.8) +
geom_smooth(method='lm', color='grey') +
theme_few() +
ggtitle('Low discrim items for kids') +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps = 12)
cor.test(coefs_2pl_adults$a1, coefs_2pl_kid$a1)
##
## Pearson's product-moment correlation
##
## data: coefs_2pl_adults$a1 and coefs_2pl_kid$a1
## t = 0.53428, df = 234, p-value = 0.5937
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.09321055 0.16188431
## sample estimates:
## cor
## 0.03490542
ggplot(data = coefs_2pl_kid, aes(d, a1)) +
geom_point(alpha=.5) +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps=20, size=2) +
theme_few(base_size=10) +
xlab("Kid IRT difficulty") +
ylab("Kid IRT discriminability (slope)")
ggplot(data = coefs_2pl_adults, aes(d, a1)) +
geom_point(alpha=.5) +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps=20, size=2) +
theme_few(base_size=10) +
xlab("Adult IRT difficulty") +
ylab("Adult IRT discriminability (slope)")
hist(coefs_2pl_adults$a1)
coefs_2pl_adults %>%
filter(a1 < quantile(a1, .1)) %>%
arrange(a1) %>%
kable()
| a1 | d | g | u | item_pair |
|---|---|---|---|---|
| -0.3580626 | 4.0506084 | 0.5 | 1 | hamster_rabbit |
| -0.1417250 | 2.3645302 | 0.5 | 1 | blower_buggy |
| -0.1351852 | 3.4616448 | 0.5 | 1 | otter_goose |
| -0.0720198 | 3.9495034 | 0.5 | 1 | sandbag_valve |
| -0.0200448 | 3.8965188 | 0.5 | 1 | milkshake_robot |
| -0.0069976 | 3.8679752 | 0.5 | 1 | shower_toe |
| 0.0117655 | 3.4648557 | 0.5 | 1 | candlestick_egg |
| 0.0402581 | 3.4716923 | 0.5 | 1 | watermelon_strawberry |
| 0.0426134 | -3.7683261 | 0.5 | 1 | gazelle_antelope |
| 0.0499397 | 3.1729882 | 0.5 | 1 | modem_scanner |
| 0.0600082 | 3.4180637 | 0.5 | 1 | screw_saw |
| 0.0604040 | 3.9405595 | 0.5 | 1 | locker_cabinet |
| 0.1426777 | 2.7703056 | 0.5 | 1 | turtle_frog |
| 0.1733058 | -0.9266288 | 0.5 | 1 | biscuit_cookie |
| 0.1844999 | 2.0274021 | 0.5 | 1 | freezer_cooler |
| 0.1919244 | 3.8984655 | 0.5 | 1 | spinach_buckle |
| 0.2040434 | 2.5951069 | 0.5 | 1 | buffet_counter |
| 0.2533247 | 2.4168397 | 0.5 | 1 | towel_blanket |
| 0.2659141 | 3.5108527 | 0.5 | 1 | fence_railing |
| 0.2713606 | 3.5597997 | 0.5 | 1 | squirrel_eagle |
| 0.3003819 | 3.1952968 | 0.5 | 1 | coffee_vase |
| 0.3106121 | 1.3245648 | 0.5 | 1 | papaya_mango |
| 0.3121030 | 3.4659911 | 0.5 | 1 | corset_mantle |
| 0.3385644 | 3.0331051 | 0.5 | 1 | bamboo_lumber |
coefs_2pl_kid %>%
filter(a1 < quantile(a1, .1)) %>%
arrange(a1) %>%
kable()
| a1 | d | g | u | item_pair |
|---|---|---|---|---|
| -0.8916197 | -0.8075449 | 0.5 | 1 | kayak_canoe |
| -0.6968886 | -2.1131271 | 0.5 | 1 | gazelle_antelope |
| -0.2456996 | -2.9373355 | 0.5 | 1 | grate_crate |
| -0.1437426 | -1.3546279 | 0.5 | 1 | flan_amplifier |
| -0.1196014 | -4.3253240 | 0.5 | 1 | mulch_compost |
| -0.0474579 | -2.4341081 | 0.5 | 1 | tuxedo_suit |
| -0.0139838 | -4.1472365 | 0.5 | 1 | bobsled_sidecar |
| 0.0702731 | -0.6957066 | 0.5 | 1 | pajamas_pants |
| 0.1270106 | -1.0531937 | 0.5 | 1 | biscuit_cookie |
| 0.2835022 | -0.6774742 | 0.5 | 1 | carousel_carriage |
| 0.3173912 | 0.8907790 | 0.5 | 1 | scoop_sauce |
| 0.3298989 | -0.2586631 | 0.5 | 1 | gondola_trolley |
| 0.3585657 | -0.0517293 | 0.5 | 1 | taillight_bumper |
| 0.3681523 | 0.1039327 | 0.5 | 1 | modem_baklava |
| 0.3984940 | -3.7095692 | 0.5 | 1 | candlestick_candle |
| 0.4174189 | -0.0866390 | 0.5 | 1 | artichoke_leek |
| 0.4401009 | 1.1922746 | 0.5 | 1 | cymbal_mallet |
| 0.4415978 | 0.5740577 | 0.5 | 1 | sorbet_palette |
| 0.4584462 | 0.2034705 | 0.5 | 1 | sorbet_tamale |
| 0.4590157 | 3.7874154 | 0.5 | 1 | fox_reindeer |
| 0.4647155 | -1.8293478 | 0.5 | 1 | sauerkraut_potpourri |
| 0.4667314 | 1.2687341 | 0.5 | 1 | blower_buggy |
| 0.4861686 | 0.1486342 | 0.5 | 1 | modem_scanner |
| 0.5012720 | 1.9398378 | 0.5 | 1 | pajamas_cage |
hist(coefs_2pl_kid$a1)
# Fit a model to all data – adults and kids – examine items
d_long_all<- pilot_data_filtered %>%
ungroup() %>%
select(sub_id, item_pair, correct) %>%
arrange(item_pair)
d_wide_all<- d_long_all %>%
ungroup() %>%
pivot_wider(names_from=item_pair, values_from=correct, values_fn = ~mean(.x))
d_mat <- d_wide_all %>%
select(-sub_id) %>%
data.frame %>%
data.matrix
rownames(d_mat) <- d_wide_all$sub_id
num_items = length(colnames(d_mat_all_data_and_subs))-1
mm = (
'F = 1-%d
PRIOR = (1-%d, a1, norm, .2, 1),
PRIOR = (1-%d, d, norm, 0, 2)'
)
mm = mirt.model(sprintf(mm,num_items,num_items,num_items))
mod_2pl_priors_all <- mirt::mirt(d_mat_all_data_and_subs, mm, itemtype='2PL',guess=.5, upper=1, verbose=TRUE)
##
Iteration: 1, Log-Lik: -59920.360, Max-Change: 22.07329
Iteration: 2, Log-Lik: -44792.378, Max-Change: 12.10760
Iteration: 3, Log-Lik: -43101.621, Max-Change: 5.31141
Iteration: 4, Log-Lik: -42822.542, Max-Change: 2.92943
Iteration: 5, Log-Lik: -42726.146, Max-Change: 0.35862
Iteration: 6, Log-Lik: -42685.508, Max-Change: 0.17923
Iteration: 7, Log-Lik: -42665.606, Max-Change: 0.18411
Iteration: 8, Log-Lik: -42654.069, Max-Change: 0.12319
Iteration: 9, Log-Lik: -42646.951, Max-Change: 0.12744
Iteration: 10, Log-Lik: -42642.415, Max-Change: 0.10373
Iteration: 11, Log-Lik: -42639.483, Max-Change: 0.10473
Iteration: 12, Log-Lik: -42637.546, Max-Change: 0.09453
Iteration: 13, Log-Lik: -42634.118, Max-Change: 0.01896
Iteration: 14, Log-Lik: -42634.043, Max-Change: 0.00624
Iteration: 15, Log-Lik: -42634.000, Max-Change: 0.00598
Iteration: 16, Log-Lik: -42633.928, Max-Change: 0.00213
Iteration: 17, Log-Lik: -42633.924, Max-Change: 0.00193
Iteration: 18, Log-Lik: -42633.923, Max-Change: 0.00162
Iteration: 19, Log-Lik: -42633.922, Max-Change: 0.00121
Iteration: 20, Log-Lik: -42633.921, Max-Change: 0.00103
Iteration: 21, Log-Lik: -42633.921, Max-Change: 0.00076
Iteration: 22, Log-Lik: -42633.920, Max-Change: 0.00149
Iteration: 23, Log-Lik: -42633.920, Max-Change: 0.00101
Iteration: 24, Log-Lik: -42633.919, Max-Change: 0.00083
Iteration: 25, Log-Lik: -42633.919, Max-Change: 0.00081
Iteration: 26, Log-Lik: -42633.919, Max-Change: 0.00072
Iteration: 27, Log-Lik: -42633.919, Max-Change: 0.00071
Iteration: 28, Log-Lik: -42633.919, Max-Change: 0.00081
Iteration: 29, Log-Lik: -42633.919, Max-Change: 0.00069
Iteration: 30, Log-Lik: -42633.919, Max-Change: 0.00341
Iteration: 31, Log-Lik: -42633.918, Max-Change: 0.00391
Iteration: 32, Log-Lik: -42633.918, Max-Change: 0.00289
Iteration: 33, Log-Lik: -42633.918, Max-Change: 0.00212
Iteration: 34, Log-Lik: -42633.918, Max-Change: 0.00061
Iteration: 35, Log-Lik: -42633.918, Max-Change: 0.00302
Iteration: 36, Log-Lik: -42633.918, Max-Change: 0.00256
Iteration: 37, Log-Lik: -42633.918, Max-Change: 0.00056
Iteration: 38, Log-Lik: -42633.918, Max-Change: 0.00275
Iteration: 39, Log-Lik: -42633.918, Max-Change: 0.00194
Iteration: 40, Log-Lik: -42633.918, Max-Change: 0.00051
Iteration: 41, Log-Lik: -42633.918, Max-Change: 0.00250
Iteration: 42, Log-Lik: -42633.918, Max-Change: 0.00155
Iteration: 43, Log-Lik: -42633.918, Max-Change: 0.00046
Iteration: 44, Log-Lik: -42633.918, Max-Change: 0.00226
Iteration: 45, Log-Lik: -42633.918, Max-Change: 0.00132
Iteration: 46, Log-Lik: -42633.918, Max-Change: 0.00042
Iteration: 47, Log-Lik: -42633.918, Max-Change: 0.00205
Iteration: 48, Log-Lik: -42633.918, Max-Change: 0.00113
Iteration: 49, Log-Lik: -42633.918, Max-Change: 0.00038
Iteration: 50, Log-Lik: -42633.918, Max-Change: 0.00185
Iteration: 51, Log-Lik: -42633.918, Max-Change: 0.00100
Iteration: 52, Log-Lik: -42633.918, Max-Change: 0.00034
Iteration: 53, Log-Lik: -42633.918, Max-Change: 0.00167
Iteration: 54, Log-Lik: -42633.918, Max-Change: 0.00088
Iteration: 55, Log-Lik: -42633.918, Max-Change: 0.00031
Iteration: 56, Log-Lik: -42633.918, Max-Change: 0.00151
Iteration: 57, Log-Lik: -42633.918, Max-Change: 0.00078
Iteration: 58, Log-Lik: -42633.918, Max-Change: 0.00028
Iteration: 59, Log-Lik: -42633.918, Max-Change: 0.00136
Iteration: 60, Log-Lik: -42633.918, Max-Change: 0.00069
Iteration: 61, Log-Lik: -42633.918, Max-Change: 0.00025
Iteration: 62, Log-Lik: -42633.918, Max-Change: 0.00123
Iteration: 63, Log-Lik: -42633.918, Max-Change: 0.00062
Iteration: 64, Log-Lik: -42633.918, Max-Change: 0.00023
Iteration: 65, Log-Lik: -42633.918, Max-Change: 0.00111
Iteration: 66, Log-Lik: -42633.918, Max-Change: 0.00055
Iteration: 67, Log-Lik: -42633.918, Max-Change: 0.00020
Iteration: 68, Log-Lik: -42633.918, Max-Change: 0.00100
Iteration: 69, Log-Lik: -42633.918, Max-Change: 0.00049
Iteration: 70, Log-Lik: -42633.918, Max-Change: 0.00018
Iteration: 71, Log-Lik: -42633.918, Max-Change: 0.00090
Iteration: 72, Log-Lik: -42633.918, Max-Change: 0.00044
Iteration: 73, Log-Lik: -42633.918, Max-Change: 0.00017
Iteration: 74, Log-Lik: -42633.918, Max-Change: 0.00081
Iteration: 75, Log-Lik: -42633.918, Max-Change: 0.00039
Iteration: 76, Log-Lik: -42633.918, Max-Change: 0.00015
Iteration: 77, Log-Lik: -42633.918, Max-Change: 0.00073
Iteration: 78, Log-Lik: -42633.918, Max-Change: 0.00035
Iteration: 79, Log-Lik: -42633.918, Max-Change: 0.00013
Iteration: 80, Log-Lik: -42633.918, Max-Change: 0.00066
Iteration: 81, Log-Lik: -42633.918, Max-Change: 0.00032
Iteration: 82, Log-Lik: -42633.918, Max-Change: 0.00012
Iteration: 83, Log-Lik: -42633.918, Max-Change: 0.00059
Iteration: 84, Log-Lik: -42633.918, Max-Change: 0.00028
Iteration: 85, Log-Lik: -42633.918, Max-Change: 0.00011
Iteration: 86, Log-Lik: -42633.918, Max-Change: 0.00053
Iteration: 87, Log-Lik: -42633.918, Max-Change: 0.00026
Iteration: 88, Log-Lik: -42633.918, Max-Change: 0.00010
coefs_2pl_all <- as_data_frame(coef(mod_2pl_priors_all, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_2pl_priors_all, simplify = TRUE)$items))
ggplot(data = coefs_2pl_all, aes(d, a1)) +
geom_point(alpha=.5) +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps=20, size=2) +
theme_few(base_size=10) +
xlab("All IRT difficulty") +
ylab("All IRT discriminability (slope)")
##Items that are too easy
coefs_2pl_all %>%
filter(d > quantile(d, .8)) %>%
arrange(d) %>%
kable()
| a1 | d | g | u | item_pair |
|---|---|---|---|---|
| 1.1203001 | 3.039186 | 0.5 | 1 | carrot_phone |
| 1.0205581 | 3.062549 | 0.5 | 1 | map_marker |
| 2.1467630 | 3.073309 | 0.5 | 1 | fence_mask |
| 1.5448845 | 3.111613 | 0.5 | 1 | squirrel_eagle |
| 1.2415037 | 3.115967 | 0.5 | 1 | whistle_wheelbarrow |
| 1.7268206 | 3.118892 | 0.5 | 1 | telescope_tripod |
| 1.7444241 | 3.134305 | 0.5 | 1 | net_tee |
| 1.6959516 | 3.194275 | 0.5 | 1 | clothespin_volleyball |
| 1.5551431 | 3.199342 | 0.5 | 1 | camp_to.steal |
| 1.9647643 | 3.206000 | 0.5 | 1 | spatula_lava |
| 1.6070718 | 3.216424 | 0.5 | 1 | swing_foot |
| 1.3987770 | 3.229957 | 0.5 | 1 | seagull_lobster |
| 1.7347603 | 3.242474 | 0.5 | 1 | oil_grain |
| 1.2258122 | 3.283059 | 0.5 | 1 | coffee_drink |
| 1.3309650 | 3.293280 | 0.5 | 1 | spinach_buckle |
| 1.4450092 | 3.298177 | 0.5 | 1 | sink_toilet |
| 0.9217709 | 3.305032 | 0.5 | 1 | cake_refrigerator |
| 1.3510312 | 3.307258 | 0.5 | 1 | shower_toe |
| 1.6677665 | 3.317932 | 0.5 | 1 | locker_basket |
| 1.4533975 | 3.327922 | 0.5 | 1 | fan_boulder |
| 1.3161654 | 3.330067 | 0.5 | 1 | teabag_fingerprint |
| 1.6750615 | 3.349312 | 0.5 | 1 | buffet_crib |
| 1.5866861 | 3.367724 | 0.5 | 1 | shirt_uniform |
| 1.0626674 | 3.369071 | 0.5 | 1 | lollipop_doorbell |
| 0.9764287 | 3.371203 | 0.5 | 1 | locker_cabinet |
| 1.9597976 | 3.377810 | 0.5 | 1 | wrench_swimsuit |
| 1.3639858 | 3.389018 | 0.5 | 1 | teapot_brake |
| 1.3288054 | 3.406742 | 0.5 | 1 | rice_dice |
| 1.3291047 | 3.422468 | 0.5 | 1 | blender_mailbox |
| 1.1513720 | 3.429997 | 0.5 | 1 | shirt_salad |
| 1.1750671 | 3.453451 | 0.5 | 1 | carrot_vegetable |
| 1.0491233 | 3.460033 | 0.5 | 1 | footbath_trough |
| 0.7160676 | 3.477152 | 0.5 | 1 | watermelon_strawberry |
| 1.3828659 | 3.490081 | 0.5 | 1 | milkshake_robot |
| 1.0277711 | 3.530527 | 0.5 | 1 | sunflower_pineapple |
| 1.0065883 | 3.536066 | 0.5 | 1 | footbath_vest |
| 1.5639530 | 3.547836 | 0.5 | 1 | hedgehog_owl |
| 1.4778208 | 3.554809 | 0.5 | 1 | fence_railing |
| 1.3001878 | 3.563968 | 0.5 | 1 | fan_album |
| 1.6168012 | 3.581453 | 0.5 | 1 | seaweed_mousetrap |
| 1.5930106 | 3.585259 | 0.5 | 1 | trumpet_violin |
| 0.2188665 | 3.594940 | 0.5 | 1 | fox_reindeer |
| 1.9296478 | 3.599647 | 0.5 | 1 | swordfish_leopard |
| 1.3595483 | 3.601908 | 0.5 | 1 | turkey_swan |
| 1.2924996 | 3.608499 | 0.5 | 1 | typewriter_sunglasses |
| 1.3253560 | 3.642301 | 0.5 | 1 | potato_pot |
| 1.5271683 | 3.643151 | 0.5 | 1 | acorn_coconut |
| 0.7870748 | 3.675282 | 0.5 | 1 | koala_bee |
| 1.0731518 | 3.678426 | 0.5 | 1 | rice_box |
| 1.0402096 | 3.688370 | 0.5 | 1 | freezer_nest |
| 1.6416021 | 3.723482 | 0.5 | 1 | hamster_tadpole |
| 2.1143866 | 3.784440 | 0.5 | 1 | honey_baby |
| 1.0990422 | 3.793780 | 0.5 | 1 | sunflower_rim |
| 1.3109265 | 3.815503 | 0.5 | 1 | telescope_windshield |
| 1.3319211 | 3.817023 | 0.5 | 1 | oatmeal_collar |
| 1.3402391 | 3.817379 | 0.5 | 1 | potato_glasses |
| 1.9762571 | 3.829459 | 0.5 | 1 | ski_suitcase |
| 1.1913219 | 3.832402 | 0.5 | 1 | cake_dessert |
| 1.2518804 | 3.856287 | 0.5 | 1 | triangle_diamond |
| 1.4197672 | 3.870667 | 0.5 | 1 | sprinkler_flower |
| 1.1054382 | 3.925262 | 0.5 | 1 | snail_cow |
| 1.7991806 | 3.931746 | 0.5 | 1 | chandelier_lightbulb |
| 1.4139813 | 3.931813 | 0.5 | 1 | cornbread_wreath |
| 1.8130951 | 3.938239 | 0.5 | 1 | turtle_horse |
| 1.8128913 | 3.940805 | 0.5 | 1 | net_domino |
| 1.1234225 | 3.970497 | 0.5 | 1 | ship_nose |
| 1.6990732 | 3.998613 | 0.5 | 1 | lollipop_candy |
| 1.8233502 | 4.002080 | 0.5 | 1 | treasure_rope |
| 1.3561816 | 4.032068 | 0.5 | 1 | marshmallow_dryer |
| 1.8903201 | 4.046975 | 0.5 | 1 | sink_stair |
| 1.5242990 | 4.051177 | 0.5 | 1 | acorn_key |
| 1.9342543 | 4.082466 | 0.5 | 1 | tongue_lipstick |
| 1.3385574 | 4.100723 | 0.5 | 1 | cheese_mud |
| 1.1227112 | 4.103345 | 0.5 | 1 | tongue_envelope |
| 1.4884980 | 4.127945 | 0.5 | 1 | pie_flashlight |
| 1.8660351 | 4.386784 | 0.5 | 1 | turkey_goat |
| 1.6089964 | 4.408481 | 0.5 | 1 | triangle_lighter |
| 1.6823316 | 4.519456 | 0.5 | 1 | elbow_bed |
| 1.4439446 | 4.612319 | 0.5 | 1 | watermelon_screwdriver |
bad_discrim <- coefs_2pl_all %>%
filter(a1 < quantile(a1, .1)) %>%
arrange(a1)
bad_discrim %>%
kable()
| a1 | d | g | u | item_pair |
|---|---|---|---|---|
| -0.8699345 | -2.0904604 | 0.5 | 1 | aversion_neutral |
| -0.7206162 | -2.9797699 | 0.5 | 1 | gazelle_antelope |
| -0.1492750 | -0.6611290 | 0.5 | 1 | resuscitation_pipetting |
| 0.0000000 | 1.8425318 | 0.5 | 1 | wrench_wreck |
| 0.0717524 | -3.0730188 | 0.5 | 1 | skimmer_strainer |
| 0.1213419 | -0.4663131 | 0.5 | 1 | tourniquet_scalpel |
| 0.1651480 | -0.3751178 | 0.5 | 1 | concentric_on.each.other |
| 0.1745380 | 0.2004710 | 0.5 | 1 | arcade_high.voltage |
| 0.2064152 | -1.0469667 | 0.5 | 1 | biscuit_cookie |
| 0.2118420 | -0.4727689 | 0.5 | 1 | saffron_clove |
| 0.2187734 | 0.2744293 | 0.5 | 1 | incensed_smile |
| 0.2188665 | 3.5949395 | 0.5 | 1 | fox_reindeer |
| 0.2419179 | -1.2077390 | 0.5 | 1 | tumble_scythes |
| 0.2790509 | -0.4993120 | 0.5 | 1 | incensed_tired |
| 0.2817110 | -3.1278124 | 0.5 | 1 | bust_monument |
| 0.2818925 | 2.5903401 | 0.5 | 1 | camp_Paint |
| 0.2966475 | -0.0508415 | 0.5 | 1 | resuscitation_measure.volts |
| 0.3518980 | 1.4966166 | 0.5 | 1 | milkshake_milk |
| 0.3925259 | 1.2368085 | 0.5 | 1 | figurehead_re.cover.plate |
| 0.4309190 | -3.4201064 | 0.5 | 1 | urban_village |
| 0.4765097 | -4.0369300 | 0.5 | 1 | precarious_taiqi |
| 0.4797841 | -3.6592079 | 0.5 | 1 | urban_rural |
| 0.5159196 | 1.0069757 | 0.5 | 1 | papaya_mango |
| 0.5208491 | 0.5185959 | 0.5 | 1 | percussion_cello |
| 0.5386545 | 2.4925473 | 0.5 | 1 | camp_march |
| 0.5521554 | 2.4729046 | 0.5 | 1 | marshmallow_snowball |
| 0.5588526 | -0.1093249 | 0.5 | 1 | concentric_one.above.the.other |
| 0.5757777 | -3.8916502 | 0.5 | 1 | colony_herd |
| 0.5805519 | -3.6535689 | 0.5 | 1 | colony_pack |
| 0.5985945 | 1.3012308 | 0.5 | 1 | squash_pumpkin |
| 0.6146388 | 2.1709332 | 0.5 | 1 | turtle_frog |
| 0.6218005 | 0.2426835 | 0.5 | 1 | skimmer_spatula |
| 0.6230445 | 1.6685440 | 0.5 | 1 | blower_buggy |
| 0.6240067 | -2.0771457 | 0.5 | 1 | saffron_star.anise |
| 0.6262345 | -1.6480280 | 0.5 | 1 | timid_excited |
| 0.6406467 | -0.9816086 | 0.5 | 1 | triad_quartet |
| 0.6536960 | 1.6647980 | 0.5 | 1 | pie_pizza |
| 0.6650648 | 0.5702578 | 0.5 | 1 | beret_safari.hat |
| 0.6662257 | -0.2261989 | 0.5 | 1 | tourniquet_wiper |
| 0.6702478 | 2.0115457 | 0.5 | 1 | elbow_arm |
high_discrim <- coefs_2pl_all %>%
filter(a1 > quantile(a1, .9)) %>%
arrange(a1)
high_discrim %>%
kable()
| a1 | d | g | u | item_pair |
|---|---|---|---|---|
| 2.056851 | 0.0665910 | 0.5 | 1 | gutter_filter |
| 2.072449 | 1.1653786 | 0.5 | 1 | silverware_trophy |
| 2.074499 | 0.9043242 | 0.5 | 1 | antenna_stem |
| 2.076460 | 0.6196242 | 0.5 | 1 | kimono_turntable |
| 2.092832 | -1.0290070 | 0.5 | 1 | sauerkraut_potpourri |
| 2.114387 | 3.7844402 | 0.5 | 1 | honey_baby |
| 2.123313 | -0.1235945 | 0.5 | 1 | artifact_crystal |
| 2.128908 | 1.6355601 | 0.5 | 1 | saddle_handle |
| 2.129147 | 1.9367702 | 0.5 | 1 | stew_mixer |
| 2.145904 | -1.0070078 | 0.5 | 1 | freezer_cooler |
| 2.146763 | 3.0733088 | 0.5 | 1 | fence_mask |
| 2.160760 | 1.5120460 | 0.5 | 1 | foam_float |
| 2.170701 | -0.8520996 | 0.5 | 1 | turbine_generator |
| 2.188677 | 0.7727513 | 0.5 | 1 | scaffolding_veil |
| 2.193455 | 1.9722460 | 0.5 | 1 | stump_bookshelf |
| 2.218671 | 2.1491016 | 0.5 | 1 | bark_skin |
| 2.225930 | -0.7077772 | 0.5 | 1 | stew_soup |
| 2.252611 | 1.5846038 | 0.5 | 1 | thermos_firewood |
| 2.293179 | -0.9080598 | 0.5 | 1 | cheese_butter |
| 2.296870 | 2.7299832 | 0.5 | 1 | turbine_tab |
| 2.298384 | 0.2660658 | 0.5 | 1 | scrabble_poker |
| 2.349732 | 0.7352558 | 0.5 | 1 | parsley_tiara |
| 2.355767 | -0.8850925 | 0.5 | 1 | flan_fuse |
| 2.372047 | 0.2943802 | 0.5 | 1 | stump_log |
| 2.520730 | 0.1721156 | 0.5 | 1 | bouquet_bandanna |
| 2.537951 | -1.3023605 | 0.5 | 1 | coaster_painting |
| 2.568831 | -1.3692457 | 0.5 | 1 | tuxedo_suit |
| 2.610815 | 0.0632070 | 0.5 | 1 | grate_reel |
| 2.648662 | -0.8351806 | 0.5 | 1 | flan_amplifier |
| 2.724403 | -1.0475319 | 0.5 | 1 | corset_harness |
| 2.726947 | -0.0796049 | 0.5 | 1 | bouquet_centerpiece |
| 2.728923 | 0.6562987 | 0.5 | 1 | prism_radar |
| 2.818669 | -0.7557641 | 0.5 | 1 | mulch_clarinet |
| 2.879336 | -2.4651821 | 0.5 | 1 | bobsled_sidecar |
| 2.917648 | -0.5656942 | 0.5 | 1 | scrabble_whisk |
| 2.988333 | -1.2470131 | 0.5 | 1 | thermos_oilcan |
| 3.030575 | -0.8767999 | 0.5 | 1 | aloe_bracket |
| 3.210406 | -0.8993710 | 0.5 | 1 | pitcher_batter |
| 3.314044 | -1.6248238 | 0.5 | 1 | pitcher_tumbleweed |
| 3.315042 | -0.5283748 | 0.5 | 1 | scaffolding_satellite |
thetas <- seq(-6,6,.1)
irt2pl <- function(a, d, theta = seq(-6,6,.1)) {
p = boot::inv.logit(a * (theta + d))
return(p)
}
iccs <- coefs_2pl_all %>%
filter(a1 > quantile(a1, .9)) %>%
split(.$item_pair) %>%
map_df(function(d) {
return(data_frame(item_pair = d$item_pair,
theta = thetas,
p = irt2pl(d$a1, d$d, thetas)))
})
ggplot(iccs,
aes(x = theta, y = p)) +
geom_line() +
facet_wrap(~item_pair) +
xlab("Ability") +
ylab("Probability of comprehension") +
ggtitle('Items with best discrimination (all data)')
iccs <- coefs_2pl_all %>%
filter(a1 < quantile(a1, .1)) %>%
split(.$item_pair) %>%
map_df(function(d) {
return(data_frame(item_pair = d$item_pair,
theta = thetas,
p = irt2pl(d$a1, d$d, thetas)))
})
ggplot(iccs,
aes(x = theta, y = p)) +
geom_line() +
facet_wrap(~item_pair) +
xlab("Ability") +
ylab("Probability of comprehension") +
ggtitle('Items with worst discrimination (all data)')
iccs <- coefs_2pl_all %>%
filter(d < quantile(d, .1)) %>%
split(.$item_pair) %>%
map_df(function(d) {
return(data_frame(item_pair = d$item_pair,
theta = thetas,
p = irt2pl(d$a1, d$d, thetas)))
})
ggplot(iccs,
aes(x = theta, y = p)) +
geom_line() +
facet_wrap(~item_pair) +
xlab("Ability") +
ylab("Probability of comprehension") +
ggtitle('Most difficult items (all data)')
iccs <- coefs_2pl_all %>%
filter(d > quantile(d, .9)) %>%
split(.$item_pair) %>%
map_df(function(d) {
return(data_frame(item_pair = d$item_pair,
theta = thetas,
p = irt2pl(d$a1, d$d, thetas)))
})
ggplot(iccs,
aes(x = theta, y = p)) +
geom_line() +
facet_wrap(~item_pair) +
xlab("Ability") +
ylab("Probability of comprehension") +
ggtitle('Easiest items (all data)')
Tried computing many of these, but they don’t finish in <1 hour, so moving on to new techniques for now..
mod_1pl_all <- mirt::mirt(d_mat_all_data_and_subs, 1, itemtype='Rasch',guess=.5, verbose=TRUE)
##
Iteration: 1, Log-Lik: -55138.394, Max-Change: 6.08098
Iteration: 2, Log-Lik: -42500.365, Max-Change: 2.72005
Iteration: 3, Log-Lik: -42064.219, Max-Change: 2.00271
Iteration: 4, Log-Lik: -41922.360, Max-Change: 1.11186
Iteration: 5, Log-Lik: -41831.802, Max-Change: 0.59453
Iteration: 6, Log-Lik: -41758.739, Max-Change: 0.46886
Iteration: 7, Log-Lik: -41695.557, Max-Change: 0.33224
Iteration: 8, Log-Lik: -41639.772, Max-Change: 0.30415
Iteration: 9, Log-Lik: -41590.325, Max-Change: 0.27279
Iteration: 10, Log-Lik: -41546.842, Max-Change: 0.24187
Iteration: 11, Log-Lik: -41508.912, Max-Change: 0.21156
Iteration: 12, Log-Lik: -41476.210, Max-Change: 0.18383
Iteration: 13, Log-Lik: -41448.346, Max-Change: 0.15871
Iteration: 14, Log-Lik: -41424.929, Max-Change: 0.13499
Iteration: 15, Log-Lik: -41405.470, Max-Change: 0.11432
Iteration: 16, Log-Lik: -41389.531, Max-Change: 0.09576
Iteration: 17, Log-Lik: -41376.614, Max-Change: 0.07956
Iteration: 18, Log-Lik: -41366.265, Max-Change: 0.06515
Iteration: 19, Log-Lik: -41358.057, Max-Change: 0.08740
Iteration: 20, Log-Lik: -41351.615, Max-Change: 0.06423
Iteration: 21, Log-Lik: -41346.582, Max-Change: 0.09052
Iteration: 22, Log-Lik: -41342.683, Max-Change: 0.05802
Iteration: 23, Log-Lik: -41339.688, Max-Change: 0.04770
Iteration: 24, Log-Lik: -41337.394, Max-Change: 0.06835
Iteration: 25, Log-Lik: -41330.152, Max-Change: 0.03736
Iteration: 26, Log-Lik: -41330.322, Max-Change: 0.02022
Iteration: 27, Log-Lik: -41330.338, Max-Change: 0.02056
Iteration: 28, Log-Lik: -41330.327, Max-Change: 2.51042
Iteration: 29, Log-Lik: -41330.305, Max-Change: 0.01924
Iteration: 30, Log-Lik: -41330.291, Max-Change: 0.00296
Iteration: 31, Log-Lik: -41330.259, Max-Change: 0.00194
Iteration: 32, Log-Lik: -41330.256, Max-Change: 0.00294
Iteration: 33, Log-Lik: -41330.251, Max-Change: 0.00126
Iteration: 34, Log-Lik: -41330.235, Max-Change: 0.00137
Iteration: 35, Log-Lik: -41330.235, Max-Change: 0.00079
Iteration: 36, Log-Lik: -41330.234, Max-Change: 0.00092
Iteration: 37, Log-Lik: -41330.231, Max-Change: 0.00024
Iteration: 38, Log-Lik: -41330.231, Max-Change: 0.00022
Iteration: 39, Log-Lik: -41330.231, Max-Change: 0.00022
Iteration: 40, Log-Lik: -41330.231, Max-Change: 0.00028
Iteration: 41, Log-Lik: -41330.231, Max-Change: 0.00010
Iteration: 42, Log-Lik: -41330.230, Max-Change: 0.00022
Iteration: 43, Log-Lik: -41330.230, Max-Change: 0.00019
Iteration: 44, Log-Lik: -41330.231, Max-Change: 0.00012
Iteration: 45, Log-Lik: -41330.231, Max-Change: 0.00012
Iteration: 46, Log-Lik: -41330.230, Max-Change: 0.00000
thetas <- fscores(mod_1pl_all, method = 'ML')
itemfit = itemfit(mod_1pl_all, fit_stats = 'X2', Theta=thetas)
itemfit$X2
## [1] 2.122096 2.074947 28.352481 8.811092 11.885934
## [6] 11.393951 12.231098 169.397168 67.587278 16.326175
## [11] 6.194394 14.873031 6.159223 5.354200 137.753259
## [16] 149.578820 20.891082 15.058188 6.590762 4.323156
## [21] 10.661175 10.262713 6.533685 4.387604 5.673304
## [26] 6.460858 2.367236 25.116336 3.818333 310.732038
## [31] 64341.830255 14.571343 2.744659 302.079652 4.668664
## [36] 7.683020 31.924059 11.379727 26.952682 9.750262
## [41] 4.203866 3.969692 3.914226 70.374739 36.111702
## [46] 15.156828 4.793786 8.557571 6.710239 13.461854
## [51] 3.270946 54.310341 15.061703 8.795150 5.490768
## [56] 26.095003 7.063954 5.315550 2.433910 4.277679
## [61] 2.854680 4.301741 5.268698 6.069480 3.092666
## [66] 9.921766 8.987431 7.290132 8.988921 12.568101
## [71] 18.941980 8.913473 10.102898 67.477318 12.950927
## [76] 13.341221 40.634376 18.462334 4.143532 8471.678375
## [81] 27.828045 85.864152 1.682123 8.329425 6.308595
## [86] 79.342375 47.635180 6.447017 2.990803 2.825690
## [91] 12.809659 2.930994 28.673769 6.428003 49.514119
## [96] 12.023278 17.223434 5.364765 7744.229374 3.444129
## [101] 87.756451 71.312838 2.614695 223.495071 116.946236
## [106] 35.991559 12.559925 8.664302 8.427482 5.986889
## [111] 55.885965 29.963301 48.059037 18.179691 6.360001
## [116] 7.320297 15.024601 4.533598 5.778255 44.513071
## [121] 12.595663 15.115490 7.809380 4.468007 8.372026
## [126] 37.220359 5.320351 6.483413 12.374303 4.995082
## [131] 6.703915 6.440270 12.345771 8.853811 4.707423
## [136] 6.087913 18.279852 96.835617 824.344046 2761.418693
## [141] 3.511675 3.181513 11.327945 15.152437 3.966397
## [146] 6.681607 3.410950 3.141864 3.346565 15.679370
## [151] 14.118051 119.013394 2.759963 20.740517 121.666236
## [156] 51.678809 5.944359 191.034930 34.242307 50.581679
## [161] 5.678054 3.643137 5.958762 11.714372 10.794789
## [166] 1.867047 8.027195 6.375145 14.700498 194.014457
## [171] 82.711327 9.305921 2.431495 4.287210 4.818196
## [176] 5.847159 15.747678 16.826850 2.212213 72.654701
## [181] 6.039565 18.017707 20.943339 61.945149 9.567278
## [186] 9.591138 15.215888 172.997560 8.789619 5.882990
## [191] 12.927365 42.289659 765.866656 5.642937 4.104802
## [196] 2.392690 17.987047 3.775431 9.954242 2.563166
## [201] 13.423429 13.214853 51.415414 48.068321 16.634186
## [206] 12.569562 4.488021 117.873341 23.694735 11.417285
## [211] 7.912573 9.241557 5.841957 255.533967 461.126596
## [216] 5.359092 34.854182 20.210709 14.157829 20.630264
## [221] 32.510883 6.116607 24.643292 87.350258 2.747519
## [226] 4.843826 33.027063 36.724368 68.979631 28.122764
## [231] 23.708779 5.940187 15.959374 3.324476 6.523051
## [236] 6.668542 4.592877 3.506067 7.582451 3.432709
## [241] 13.287679 16.633163 47.325472 25.592615 16.507085
## [246] 13.649386 7.695213 7.634685 157.956799 7.596612
## [251] 8.295404 5.887937 4.051964 11.677740 79.353709
## [256] 427.234641 486.779890 16.026964 3.055802 8.308069
## [261] 59.526517 76.647211 73.923948 28.778486 6.102484
## [266] 10.777564 4.467430 7.093745 12.565023 40.540311
## [271] 7.986180 1.402318 552.869884 3.122629 11.047102
## [276] 15.356881 40.018739 5.088270 5035.967077 3.675719
## [281] 8.633687 3.820147 3.955670 5.095675 5.858978
## [286] 11.192403 4.624221 12.423953 3.312057 13.544600
## [291] 8.205291 2.344692 266.523551 9.741386 7.722953
## [296] 60.564099 17.407595 6.154674 5.380762 25.876299
## [301] 1.608552 6.926346 9.834860 12.321894 4.262087
## [306] 38.074974 3.092335 5.264781 1.983663 25.444393
## [311] 5.819172 62.105919 7.592905 410.245194 16.361289
## [316] 8.257281 401.793194 7.485002 6.768996 4.409889
## [321] 2.880642 9.131532 7.093383 10.959981 8.954943
## [326] 5.531176 5.923968 1.655589 26.802676 39.857108
## [331] 3.635188 14.145116 3.548260 41.072647 6.646177
## [336] 8.600885 5.922302 3.553813 8.093463 4.561042
## [341] 11.185965 3.505933 1.844214 6.319642 33.912246
## [346] 3.136027 69.755886 273.719319 14.588769 3.577993
## [351] 9.394422 137.469383 2137.161392 306.859083 5.321720
## [356] 10.413903 3.936144 30807.839570 22.658591 102.216611
## [361] 1.376914 1.625236 6.688565 8.089121 4.724926
## [366] 16.434710 4.107461 218.663294 17.051923 12.514884
## [371] 5.657884 3.079879 6.010105 40.560044 2.036050
## [376] 3.786751 12.150778 5.155424 1.935079 91.747736
## [381] 22.311254 18.513903 2.030868 39.605179 4.483405
## [386] 3.816822 10.404416 6.748160 3.735073 40.161532
## [391] 3.269217 5.302776 25.982237
bad_items <- itemfit %>%
filter(X2>quantile(X2,.9)) %>%
arrange(-X2)
iccs <- coefs_2pl_all %>%
filter(item_pair %in% bad_items$item) %>%
split(.$item_pair) %>%
map_df(function(d) {
return(data_frame(item_pair = d$item_pair,
theta = thetas,
p = irt2pl(d$a1, d$d, thetas)))
})
ggplot(iccs,
aes(x = theta, y = p)) +
geom_line() +
facet_wrap(~item_pair) +
xlab("Ability") +
ylab("Probability of comprehension") +
ggtitle('Easiest items (all data)')
outliers <- TRUE
maxiter <- 20
iteration <- 0
df_good <- d_mat
aminmax <- c(.7, Inf) # Keep items with positive slopes between .7 and 1
# Model priors specified in loop
while (outliers > 0 & iteration<maxiter){
iteration <- iteration + 1;
start.dim <- dim(df_good)[2]-1
mm = (
'F = 1-%d,
PRIOR = (1-%d, a1, norm, .2, 1),
PRIOR = (1-%d, d, norm, 0, 2)'
)
mm = mirt.model(sprintf(mm,start.dim,start.dim,start.dim))
m <- mirt(df_good, model = mm,itemtype = '2PL',guess=0.5) # 2AFC. Guess Rate = 0.5
co <- coef(m,simplify=TRUE, IRTpars = TRUE) # Get coeeficients
co <- tibble::rownames_to_column(as.data.frame(co$items),'words')
ggplot(co, aes(a, b)) + geom_point(size=3)
ggsave(sprintf('2PL-ModelParams_%d.png',iteration))
# Remove items with low or extreme slope and refit
df_good <- d_mat[,which(co$a>aminmax[1] & co$a<aminmax[2])]
end.dim <- dim(df_good)[2]-1
outliers <- sum(!(co$a>aminmax[1] & co$a<aminmax[2]))
print(sprintf('2PL ITERATION %d. STARTED WITH %d ITEMS. %d OUTLIERS REMOVED. %d ITEMS RETAINED.',iteration,start.dim,outliers,end.dim))
}
##
Iteration: 1, Log-Lik: -59920.360, Max-Change: 22.07329
Iteration: 2, Log-Lik: -44792.378, Max-Change: 12.10760
Iteration: 3, Log-Lik: -43101.621, Max-Change: 5.31141
Iteration: 4, Log-Lik: -42822.542, Max-Change: 2.92943
Iteration: 5, Log-Lik: -42726.146, Max-Change: 0.35862
Iteration: 6, Log-Lik: -42685.508, Max-Change: 0.17923
Iteration: 7, Log-Lik: -42665.606, Max-Change: 0.18411
Iteration: 8, Log-Lik: -42654.069, Max-Change: 0.12319
Iteration: 9, Log-Lik: -42646.951, Max-Change: 0.12744
Iteration: 10, Log-Lik: -42642.415, Max-Change: 0.10373
Iteration: 11, Log-Lik: -42639.483, Max-Change: 0.10473
Iteration: 12, Log-Lik: -42637.546, Max-Change: 0.09453
Iteration: 13, Log-Lik: -42634.118, Max-Change: 0.01896
Iteration: 14, Log-Lik: -42634.043, Max-Change: 0.00624
Iteration: 15, Log-Lik: -42634.000, Max-Change: 0.00598
Iteration: 16, Log-Lik: -42633.928, Max-Change: 0.00213
Iteration: 17, Log-Lik: -42633.924, Max-Change: 0.00193
Iteration: 18, Log-Lik: -42633.923, Max-Change: 0.00162
Iteration: 19, Log-Lik: -42633.922, Max-Change: 0.00121
Iteration: 20, Log-Lik: -42633.921, Max-Change: 0.00103
Iteration: 21, Log-Lik: -42633.921, Max-Change: 0.00076
Iteration: 22, Log-Lik: -42633.920, Max-Change: 0.00149
Iteration: 23, Log-Lik: -42633.920, Max-Change: 0.00101
Iteration: 24, Log-Lik: -42633.919, Max-Change: 0.00083
Iteration: 25, Log-Lik: -42633.919, Max-Change: 0.00081
Iteration: 26, Log-Lik: -42633.919, Max-Change: 0.00072
Iteration: 27, Log-Lik: -42633.919, Max-Change: 0.00071
Iteration: 28, Log-Lik: -42633.919, Max-Change: 0.00081
Iteration: 29, Log-Lik: -42633.919, Max-Change: 0.00069
Iteration: 30, Log-Lik: -42633.919, Max-Change: 0.00341
Iteration: 31, Log-Lik: -42633.918, Max-Change: 0.00391
Iteration: 32, Log-Lik: -42633.918, Max-Change: 0.00289
Iteration: 33, Log-Lik: -42633.918, Max-Change: 0.00212
Iteration: 34, Log-Lik: -42633.918, Max-Change: 0.00061
Iteration: 35, Log-Lik: -42633.918, Max-Change: 0.00302
Iteration: 36, Log-Lik: -42633.918, Max-Change: 0.00256
Iteration: 37, Log-Lik: -42633.918, Max-Change: 0.00056
Iteration: 38, Log-Lik: -42633.918, Max-Change: 0.00275
Iteration: 39, Log-Lik: -42633.918, Max-Change: 0.00194
Iteration: 40, Log-Lik: -42633.918, Max-Change: 0.00051
Iteration: 41, Log-Lik: -42633.918, Max-Change: 0.00250
Iteration: 42, Log-Lik: -42633.918, Max-Change: 0.00155
Iteration: 43, Log-Lik: -42633.918, Max-Change: 0.00046
Iteration: 44, Log-Lik: -42633.918, Max-Change: 0.00226
Iteration: 45, Log-Lik: -42633.918, Max-Change: 0.00132
Iteration: 46, Log-Lik: -42633.918, Max-Change: 0.00042
Iteration: 47, Log-Lik: -42633.918, Max-Change: 0.00205
Iteration: 48, Log-Lik: -42633.918, Max-Change: 0.00113
Iteration: 49, Log-Lik: -42633.918, Max-Change: 0.00038
Iteration: 50, Log-Lik: -42633.918, Max-Change: 0.00185
Iteration: 51, Log-Lik: -42633.918, Max-Change: 0.00100
Iteration: 52, Log-Lik: -42633.918, Max-Change: 0.00034
Iteration: 53, Log-Lik: -42633.918, Max-Change: 0.00167
Iteration: 54, Log-Lik: -42633.918, Max-Change: 0.00088
Iteration: 55, Log-Lik: -42633.918, Max-Change: 0.00031
Iteration: 56, Log-Lik: -42633.918, Max-Change: 0.00151
Iteration: 57, Log-Lik: -42633.918, Max-Change: 0.00078
Iteration: 58, Log-Lik: -42633.918, Max-Change: 0.00028
Iteration: 59, Log-Lik: -42633.918, Max-Change: 0.00136
Iteration: 60, Log-Lik: -42633.918, Max-Change: 0.00069
Iteration: 61, Log-Lik: -42633.918, Max-Change: 0.00025
Iteration: 62, Log-Lik: -42633.918, Max-Change: 0.00123
Iteration: 63, Log-Lik: -42633.918, Max-Change: 0.00062
Iteration: 64, Log-Lik: -42633.918, Max-Change: 0.00023
Iteration: 65, Log-Lik: -42633.918, Max-Change: 0.00111
Iteration: 66, Log-Lik: -42633.918, Max-Change: 0.00055
Iteration: 67, Log-Lik: -42633.918, Max-Change: 0.00020
Iteration: 68, Log-Lik: -42633.918, Max-Change: 0.00100
Iteration: 69, Log-Lik: -42633.918, Max-Change: 0.00049
Iteration: 70, Log-Lik: -42633.918, Max-Change: 0.00018
Iteration: 71, Log-Lik: -42633.918, Max-Change: 0.00090
Iteration: 72, Log-Lik: -42633.918, Max-Change: 0.00044
Iteration: 73, Log-Lik: -42633.918, Max-Change: 0.00017
Iteration: 74, Log-Lik: -42633.918, Max-Change: 0.00081
Iteration: 75, Log-Lik: -42633.918, Max-Change: 0.00039
Iteration: 76, Log-Lik: -42633.918, Max-Change: 0.00015
Iteration: 77, Log-Lik: -42633.918, Max-Change: 0.00073
Iteration: 78, Log-Lik: -42633.918, Max-Change: 0.00035
Iteration: 79, Log-Lik: -42633.918, Max-Change: 0.00013
Iteration: 80, Log-Lik: -42633.918, Max-Change: 0.00066
Iteration: 81, Log-Lik: -42633.918, Max-Change: 0.00032
Iteration: 82, Log-Lik: -42633.918, Max-Change: 0.00012
Iteration: 83, Log-Lik: -42633.918, Max-Change: 0.00059
Iteration: 84, Log-Lik: -42633.918, Max-Change: 0.00028
Iteration: 85, Log-Lik: -42633.918, Max-Change: 0.00011
Iteration: 86, Log-Lik: -42633.918, Max-Change: 0.00053
Iteration: 87, Log-Lik: -42633.918, Max-Change: 0.00026
Iteration: 88, Log-Lik: -42633.918, Max-Change: 0.00010
## [1] "2PL ITERATION 1. STARTED WITH 392 ITEMS. 43 OUTLIERS REMOVED. 349 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -54215.740, Max-Change: 18.28001
Iteration: 2, Log-Lik: -40003.600, Max-Change: 10.15031
Iteration: 3, Log-Lik: -38449.876, Max-Change: 4.84932
Iteration: 4, Log-Lik: -38197.898, Max-Change: 2.19555
Iteration: 5, Log-Lik: -38109.435, Max-Change: 0.30561
Iteration: 6, Log-Lik: -38070.002, Max-Change: 0.22197
Iteration: 7, Log-Lik: -38049.375, Max-Change: 0.16645
Iteration: 8, Log-Lik: -38037.219, Max-Change: 0.09486
Iteration: 9, Log-Lik: -38029.701, Max-Change: 0.08154
Iteration: 10, Log-Lik: -38024.926, Max-Change: 0.07825
Iteration: 11, Log-Lik: -38021.817, Max-Change: 0.06263
Iteration: 12, Log-Lik: -38019.814, Max-Change: 0.04775
Iteration: 13, Log-Lik: -38016.324, Max-Change: 0.00778
Iteration: 14, Log-Lik: -38016.257, Max-Change: 0.00680
Iteration: 15, Log-Lik: -38016.215, Max-Change: 0.00536
Iteration: 16, Log-Lik: -38016.144, Max-Change: 0.00230
Iteration: 17, Log-Lik: -38016.141, Max-Change: 0.00142
Iteration: 18, Log-Lik: -38016.140, Max-Change: 0.00079
Iteration: 19, Log-Lik: -38016.139, Max-Change: 0.00052
Iteration: 20, Log-Lik: -38016.139, Max-Change: 0.00047
Iteration: 21, Log-Lik: -38016.138, Max-Change: 0.00042
Iteration: 22, Log-Lik: -38016.137, Max-Change: 0.00102
Iteration: 23, Log-Lik: -38016.137, Max-Change: 0.00082
Iteration: 24, Log-Lik: -38016.137, Max-Change: 0.00055
Iteration: 25, Log-Lik: -38016.137, Max-Change: 0.00043
Iteration: 26, Log-Lik: -38016.137, Max-Change: 0.00186
Iteration: 27, Log-Lik: -38016.137, Max-Change: 0.00230
Iteration: 28, Log-Lik: -38016.137, Max-Change: 0.00069
Iteration: 29, Log-Lik: -38016.137, Max-Change: 0.00049
Iteration: 30, Log-Lik: -38016.137, Max-Change: 0.00038
Iteration: 31, Log-Lik: -38016.137, Max-Change: 0.00159
Iteration: 32, Log-Lik: -38016.137, Max-Change: 0.00115
Iteration: 33, Log-Lik: -38016.137, Max-Change: 0.00085
Iteration: 34, Log-Lik: -38016.137, Max-Change: 0.00139
Iteration: 35, Log-Lik: -38016.137, Max-Change: 0.00118
Iteration: 36, Log-Lik: -38016.137, Max-Change: 0.00087
Iteration: 37, Log-Lik: -38016.137, Max-Change: 0.00024
Iteration: 38, Log-Lik: -38016.137, Max-Change: 0.00024
Iteration: 39, Log-Lik: -38016.137, Max-Change: 0.00116
Iteration: 40, Log-Lik: -38016.137, Max-Change: 0.00094
Iteration: 41, Log-Lik: -38016.137, Max-Change: 0.00069
Iteration: 42, Log-Lik: -38016.137, Max-Change: 0.00051
Iteration: 43, Log-Lik: -38016.137, Max-Change: 0.00097
Iteration: 44, Log-Lik: -38016.137, Max-Change: 0.00078
Iteration: 45, Log-Lik: -38016.137, Max-Change: 0.00057
Iteration: 46, Log-Lik: -38016.137, Max-Change: 0.00017
Iteration: 47, Log-Lik: -38016.137, Max-Change: 0.00016
Iteration: 48, Log-Lik: -38016.137, Max-Change: 0.00080
Iteration: 49, Log-Lik: -38016.137, Max-Change: 0.00063
Iteration: 50, Log-Lik: -38016.137, Max-Change: 0.00046
Iteration: 51, Log-Lik: -38016.137, Max-Change: 0.00034
Iteration: 52, Log-Lik: -38016.137, Max-Change: 0.00013
Iteration: 53, Log-Lik: -38016.137, Max-Change: 0.00065
Iteration: 54, Log-Lik: -38016.137, Max-Change: 0.00040
Iteration: 55, Log-Lik: -38016.137, Max-Change: 0.00012
Iteration: 56, Log-Lik: -38016.137, Max-Change: 0.00056
Iteration: 57, Log-Lik: -38016.137, Max-Change: 0.00035
Iteration: 58, Log-Lik: -38016.137, Max-Change: 0.00010
## [1] "2PL ITERATION 2. STARTED WITH 349 ITEMS. 2 OUTLIERS REMOVED. 347 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -53593.338, Max-Change: 20.91328
Iteration: 2, Log-Lik: -40342.021, Max-Change: 10.94145
Iteration: 3, Log-Lik: -39073.081, Max-Change: 5.00637
Iteration: 4, Log-Lik: -38826.621, Max-Change: 2.23976
Iteration: 5, Log-Lik: -38751.040, Max-Change: 0.27475
Iteration: 6, Log-Lik: -38720.523, Max-Change: 0.12551
Iteration: 7, Log-Lik: -38706.191, Max-Change: 0.09824
Iteration: 8, Log-Lik: -38698.363, Max-Change: 0.10030
Iteration: 9, Log-Lik: -38693.745, Max-Change: 0.09730
Iteration: 10, Log-Lik: -38690.917, Max-Change: 0.07916
Iteration: 11, Log-Lik: -38689.135, Max-Change: 0.05918
Iteration: 12, Log-Lik: -38688.018, Max-Change: 0.04206
Iteration: 13, Log-Lik: -38686.226, Max-Change: 0.00758
Iteration: 14, Log-Lik: -38686.180, Max-Change: 0.00576
Iteration: 15, Log-Lik: -38686.153, Max-Change: 0.00466
Iteration: 16, Log-Lik: -38686.123, Max-Change: 0.00227
Iteration: 17, Log-Lik: -38686.117, Max-Change: 0.00192
Iteration: 18, Log-Lik: -38686.113, Max-Change: 0.00166
Iteration: 19, Log-Lik: -38686.104, Max-Change: 0.00180
Iteration: 20, Log-Lik: -38686.104, Max-Change: 0.00144
Iteration: 21, Log-Lik: -38686.104, Max-Change: 0.00096
Iteration: 22, Log-Lik: -38686.104, Max-Change: 0.00177
Iteration: 23, Log-Lik: -38686.104, Max-Change: 0.00131
Iteration: 24, Log-Lik: -38686.104, Max-Change: 0.00092
Iteration: 25, Log-Lik: -38686.104, Max-Change: 0.00150
Iteration: 26, Log-Lik: -38686.104, Max-Change: 0.00090
Iteration: 27, Log-Lik: -38686.104, Max-Change: 0.00066
Iteration: 28, Log-Lik: -38686.104, Max-Change: 0.00128
Iteration: 29, Log-Lik: -38686.104, Max-Change: 0.00057
Iteration: 30, Log-Lik: -38686.104, Max-Change: 0.00042
Iteration: 31, Log-Lik: -38686.104, Max-Change: 0.00544
Iteration: 32, Log-Lik: -38686.104, Max-Change: 0.00066
Iteration: 33, Log-Lik: -38686.104, Max-Change: 0.00048
Iteration: 34, Log-Lik: -38686.104, Max-Change: 0.00012
Iteration: 35, Log-Lik: -38686.104, Max-Change: 0.00009
## [1] "2PL ITERATION 3. STARTED WITH 347 ITEMS. 36 OUTLIERS REMOVED. 311 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -49250.023, Max-Change: 23.10124
Iteration: 2, Log-Lik: -36680.589, Max-Change: 8.36575
Iteration: 3, Log-Lik: -35527.964, Max-Change: 4.69536
Iteration: 4, Log-Lik: -35313.843, Max-Change: 2.21978
Iteration: 5, Log-Lik: -35243.621, Max-Change: 0.28247
Iteration: 6, Log-Lik: -35214.697, Max-Change: 0.12617
Iteration: 7, Log-Lik: -35201.139, Max-Change: 0.09567
Iteration: 8, Log-Lik: -35193.775, Max-Change: 0.07567
Iteration: 9, Log-Lik: -35189.469, Max-Change: 0.06126
Iteration: 10, Log-Lik: -35186.836, Max-Change: 0.04838
Iteration: 11, Log-Lik: -35185.216, Max-Change: 0.03993
Iteration: 12, Log-Lik: -35184.208, Max-Change: 0.02735
Iteration: 13, Log-Lik: -35182.647, Max-Change: 0.00813
Iteration: 14, Log-Lik: -35182.602, Max-Change: 0.00586
Iteration: 15, Log-Lik: -35182.574, Max-Change: 0.00479
Iteration: 16, Log-Lik: -35182.544, Max-Change: 0.00234
Iteration: 17, Log-Lik: -35182.538, Max-Change: 0.00194
Iteration: 18, Log-Lik: -35182.534, Max-Change: 0.00195
Iteration: 19, Log-Lik: -35182.526, Max-Change: 0.00158
Iteration: 20, Log-Lik: -35182.526, Max-Change: 0.00123
Iteration: 21, Log-Lik: -35182.526, Max-Change: 0.00084
Iteration: 22, Log-Lik: -35182.526, Max-Change: 0.00068
Iteration: 23, Log-Lik: -35182.526, Max-Change: 0.00336
Iteration: 24, Log-Lik: -35182.526, Max-Change: 0.00207
Iteration: 25, Log-Lik: -35182.526, Max-Change: 0.00073
Iteration: 26, Log-Lik: -35182.526, Max-Change: 0.00060
Iteration: 27, Log-Lik: -35182.526, Max-Change: 0.00059
Iteration: 28, Log-Lik: -35182.526, Max-Change: 0.00292
Iteration: 29, Log-Lik: -35182.526, Max-Change: 0.00113
Iteration: 30, Log-Lik: -35182.526, Max-Change: 0.00083
Iteration: 31, Log-Lik: -35182.526, Max-Change: 0.00262
Iteration: 32, Log-Lik: -35182.526, Max-Change: 0.00084
Iteration: 33, Log-Lik: -35182.526, Max-Change: 0.00062
Iteration: 34, Log-Lik: -35182.526, Max-Change: 0.01168
Iteration: 35, Log-Lik: -35182.525, Max-Change: 0.00250
Iteration: 36, Log-Lik: -35182.525, Max-Change: 0.00183
Iteration: 37, Log-Lik: -35182.525, Max-Change: 0.00048
Iteration: 38, Log-Lik: -35182.525, Max-Change: 0.00035
Iteration: 39, Log-Lik: -35182.525, Max-Change: 0.00026
Iteration: 40, Log-Lik: -35182.525, Max-Change: 0.00624
Iteration: 41, Log-Lik: -35182.525, Max-Change: 0.00057
Iteration: 42, Log-Lik: -35182.525, Max-Change: 0.00042
Iteration: 43, Log-Lik: -35182.525, Max-Change: 0.00013
Iteration: 44, Log-Lik: -35182.525, Max-Change: 0.00013
Iteration: 45, Log-Lik: -35182.525, Max-Change: 0.00013
Iteration: 46, Log-Lik: -35182.525, Max-Change: 0.00062
Iteration: 47, Log-Lik: -35182.525, Max-Change: 0.00026
Iteration: 48, Log-Lik: -35182.525, Max-Change: 0.00019
Iteration: 49, Log-Lik: -35182.525, Max-Change: 0.00055
Iteration: 50, Log-Lik: -35182.525, Max-Change: 0.00027
Iteration: 51, Log-Lik: -35182.525, Max-Change: 0.00020
Iteration: 52, Log-Lik: -35182.525, Max-Change: 0.00010
## [1] "2PL ITERATION 4. STARTED WITH 311 ITEMS. 12 OUTLIERS REMOVED. 299 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -45898.322, Max-Change: 18.63583
Iteration: 2, Log-Lik: -34587.399, Max-Change: 9.43726
Iteration: 3, Log-Lik: -33639.496, Max-Change: 4.83061
Iteration: 4, Log-Lik: -33439.361, Max-Change: 1.32920
Iteration: 5, Log-Lik: -33381.550, Max-Change: 0.18192
Iteration: 6, Log-Lik: -33362.763, Max-Change: 0.09880
Iteration: 7, Log-Lik: -33355.052, Max-Change: 0.07450
Iteration: 8, Log-Lik: -33351.324, Max-Change: 0.05658
Iteration: 9, Log-Lik: -33349.318, Max-Change: 0.04249
Iteration: 10, Log-Lik: -33348.189, Max-Change: 0.03162
Iteration: 11, Log-Lik: -33347.536, Max-Change: 0.02423
Iteration: 12, Log-Lik: -33347.153, Max-Change: 0.01966
Iteration: 13, Log-Lik: -33346.649, Max-Change: 0.00519
Iteration: 14, Log-Lik: -33346.627, Max-Change: 0.00383
Iteration: 15, Log-Lik: -33346.616, Max-Change: 0.00314
Iteration: 16, Log-Lik: -33346.599, Max-Change: 0.00398
Iteration: 17, Log-Lik: -33346.596, Max-Change: 0.00106
Iteration: 18, Log-Lik: -33346.596, Max-Change: 0.00389
Iteration: 19, Log-Lik: -33346.596, Max-Change: 0.00454
Iteration: 20, Log-Lik: -33346.595, Max-Change: 0.00292
Iteration: 21, Log-Lik: -33346.595, Max-Change: 0.00224
Iteration: 22, Log-Lik: -33346.595, Max-Change: 0.00331
Iteration: 23, Log-Lik: -33346.595, Max-Change: 0.00347
Iteration: 24, Log-Lik: -33346.595, Max-Change: 0.00237
Iteration: 25, Log-Lik: -33346.595, Max-Change: 0.00060
Iteration: 26, Log-Lik: -33346.595, Max-Change: 0.00059
Iteration: 27, Log-Lik: -33346.595, Max-Change: 0.00292
Iteration: 28, Log-Lik: -33346.595, Max-Change: 0.00265
Iteration: 29, Log-Lik: -33346.595, Max-Change: 0.00188
Iteration: 30, Log-Lik: -33346.595, Max-Change: 0.00131
Iteration: 31, Log-Lik: -33346.595, Max-Change: 0.00257
Iteration: 32, Log-Lik: -33346.595, Max-Change: 0.00206
Iteration: 33, Log-Lik: -33346.595, Max-Change: 0.00145
Iteration: 34, Log-Lik: -33346.595, Max-Change: 0.00046
Iteration: 35, Log-Lik: -33346.595, Max-Change: 0.00228
Iteration: 36, Log-Lik: -33346.595, Max-Change: 0.00184
Iteration: 37, Log-Lik: -33346.594, Max-Change: 0.00042
Iteration: 38, Log-Lik: -33346.594, Max-Change: 0.00206
Iteration: 39, Log-Lik: -33346.594, Max-Change: 0.00154
Iteration: 40, Log-Lik: -33346.594, Max-Change: 0.00038
Iteration: 41, Log-Lik: -33346.594, Max-Change: 0.00185
Iteration: 42, Log-Lik: -33346.594, Max-Change: 0.00137
Iteration: 43, Log-Lik: -33346.594, Max-Change: 0.00034
Iteration: 44, Log-Lik: -33346.594, Max-Change: 0.00167
Iteration: 45, Log-Lik: -33346.594, Max-Change: 0.00119
Iteration: 46, Log-Lik: -33346.594, Max-Change: 0.00030
Iteration: 47, Log-Lik: -33346.594, Max-Change: 0.00150
Iteration: 48, Log-Lik: -33346.594, Max-Change: 0.00105
Iteration: 49, Log-Lik: -33346.594, Max-Change: 0.00027
Iteration: 50, Log-Lik: -33346.594, Max-Change: 0.00135
Iteration: 51, Log-Lik: -33346.594, Max-Change: 0.00093
Iteration: 52, Log-Lik: -33346.594, Max-Change: 0.00025
Iteration: 53, Log-Lik: -33346.594, Max-Change: 0.00121
Iteration: 54, Log-Lik: -33346.594, Max-Change: 0.00082
Iteration: 55, Log-Lik: -33346.594, Max-Change: 0.00022
Iteration: 56, Log-Lik: -33346.594, Max-Change: 0.00109
Iteration: 57, Log-Lik: -33346.594, Max-Change: 0.00072
Iteration: 58, Log-Lik: -33346.594, Max-Change: 0.00020
Iteration: 59, Log-Lik: -33346.594, Max-Change: 0.00098
Iteration: 60, Log-Lik: -33346.594, Max-Change: 0.00064
Iteration: 61, Log-Lik: -33346.594, Max-Change: 0.00018
Iteration: 62, Log-Lik: -33346.594, Max-Change: 0.00088
Iteration: 63, Log-Lik: -33346.594, Max-Change: 0.00057
Iteration: 64, Log-Lik: -33346.594, Max-Change: 0.00016
Iteration: 65, Log-Lik: -33346.594, Max-Change: 0.00079
Iteration: 66, Log-Lik: -33346.594, Max-Change: 0.00050
Iteration: 67, Log-Lik: -33346.594, Max-Change: 0.00015
Iteration: 68, Log-Lik: -33346.594, Max-Change: 0.00071
Iteration: 69, Log-Lik: -33346.594, Max-Change: 0.00045
Iteration: 70, Log-Lik: -33346.594, Max-Change: 0.00013
Iteration: 71, Log-Lik: -33346.594, Max-Change: 0.00064
Iteration: 72, Log-Lik: -33346.594, Max-Change: 0.00040
Iteration: 73, Log-Lik: -33346.594, Max-Change: 0.00012
Iteration: 74, Log-Lik: -33346.594, Max-Change: 0.00058
Iteration: 75, Log-Lik: -33346.594, Max-Change: 0.00035
Iteration: 76, Log-Lik: -33346.594, Max-Change: 0.00011
Iteration: 77, Log-Lik: -33346.594, Max-Change: 0.00052
Iteration: 78, Log-Lik: -33346.594, Max-Change: 0.00031
Iteration: 79, Log-Lik: -33346.594, Max-Change: 0.00009
## [1] "2PL ITERATION 5. STARTED WITH 299 ITEMS. 38 OUTLIERS REMOVED. 261 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -41075.352, Max-Change: 16.00120
Iteration: 2, Log-Lik: -31118.119, Max-Change: 7.78021
Iteration: 3, Log-Lik: -30296.033, Max-Change: 4.91813
Iteration: 4, Log-Lik: -30114.710, Max-Change: 0.44479
Iteration: 5, Log-Lik: -30059.835, Max-Change: 0.19410
Iteration: 6, Log-Lik: -30043.974, Max-Change: 0.09844
Iteration: 7, Log-Lik: -30038.017, Max-Change: 0.06436
Iteration: 8, Log-Lik: -30035.372, Max-Change: 0.04762
Iteration: 9, Log-Lik: -30034.070, Max-Change: 0.03449
Iteration: 10, Log-Lik: -30033.382, Max-Change: 0.02594
Iteration: 11, Log-Lik: -30033.004, Max-Change: 0.02013
Iteration: 12, Log-Lik: -30032.788, Max-Change: 0.01364
Iteration: 13, Log-Lik: -30032.553, Max-Change: 0.00631
Iteration: 14, Log-Lik: -30032.536, Max-Change: 0.00431
Iteration: 15, Log-Lik: -30032.526, Max-Change: 0.00328
Iteration: 16, Log-Lik: -30032.511, Max-Change: 0.00219
Iteration: 17, Log-Lik: -30032.510, Max-Change: 0.00448
Iteration: 18, Log-Lik: -30032.510, Max-Change: 0.00365
Iteration: 19, Log-Lik: -30032.509, Max-Change: 0.00105
Iteration: 20, Log-Lik: -30032.509, Max-Change: 0.00057
Iteration: 21, Log-Lik: -30032.509, Max-Change: 0.00267
Iteration: 22, Log-Lik: -30032.509, Max-Change: 0.00350
Iteration: 23, Log-Lik: -30032.509, Max-Change: 0.00223
Iteration: 24, Log-Lik: -30032.509, Max-Change: 0.00160
Iteration: 25, Log-Lik: -30032.509, Max-Change: 0.00045
Iteration: 26, Log-Lik: -30032.509, Max-Change: 0.00218
Iteration: 27, Log-Lik: -30032.509, Max-Change: 0.00190
Iteration: 28, Log-Lik: -30032.509, Max-Change: 0.00043
Iteration: 29, Log-Lik: -30032.509, Max-Change: 0.00038
Iteration: 30, Log-Lik: -30032.509, Max-Change: 0.00184
Iteration: 31, Log-Lik: -30032.509, Max-Change: 0.00174
Iteration: 32, Log-Lik: -30032.508, Max-Change: 0.00119
Iteration: 33, Log-Lik: -30032.508, Max-Change: 0.00080
Iteration: 34, Log-Lik: -30032.508, Max-Change: 0.00031
Iteration: 35, Log-Lik: -30032.508, Max-Change: 0.00150
Iteration: 36, Log-Lik: -30032.508, Max-Change: 0.00101
Iteration: 37, Log-Lik: -30032.508, Max-Change: 0.00026
Iteration: 38, Log-Lik: -30032.508, Max-Change: 0.00026
Iteration: 39, Log-Lik: -30032.508, Max-Change: 0.00126
Iteration: 40, Log-Lik: -30032.508, Max-Change: 0.00087
Iteration: 41, Log-Lik: -30032.508, Max-Change: 0.00059
Iteration: 42, Log-Lik: -30032.508, Max-Change: 0.00040
Iteration: 43, Log-Lik: -30032.508, Max-Change: 0.00104
Iteration: 44, Log-Lik: -30032.508, Max-Change: 0.00064
Iteration: 45, Log-Lik: -30032.508, Max-Change: 0.00044
Iteration: 46, Log-Lik: -30032.508, Max-Change: 0.00018
Iteration: 47, Log-Lik: -30032.508, Max-Change: 0.00087
Iteration: 48, Log-Lik: -30032.508, Max-Change: 0.00057
Iteration: 49, Log-Lik: -30032.508, Max-Change: 0.00015
Iteration: 50, Log-Lik: -30032.508, Max-Change: 0.00075
Iteration: 51, Log-Lik: -30032.508, Max-Change: 0.00054
Iteration: 52, Log-Lik: -30032.508, Max-Change: 0.00013
Iteration: 53, Log-Lik: -30032.508, Max-Change: 0.00064
Iteration: 54, Log-Lik: -30032.508, Max-Change: 0.00043
Iteration: 55, Log-Lik: -30032.508, Max-Change: 0.00011
Iteration: 56, Log-Lik: -30032.508, Max-Change: 0.00055
Iteration: 57, Log-Lik: -30032.508, Max-Change: 0.00037
Iteration: 58, Log-Lik: -30032.508, Max-Change: 0.00010
## [1] "2PL ITERATION 6. STARTED WITH 261 ITEMS. 31 OUTLIERS REMOVED. 230 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -35164.863, Max-Change: 17.99941
Iteration: 2, Log-Lik: -26234.609, Max-Change: 5.83621
Iteration: 3, Log-Lik: -25598.581, Max-Change: 3.51457
Iteration: 4, Log-Lik: -25456.251, Max-Change: 0.47900
Iteration: 5, Log-Lik: -25422.707, Max-Change: 0.19078
Iteration: 6, Log-Lik: -25413.320, Max-Change: 0.10501
Iteration: 7, Log-Lik: -25410.231, Max-Change: 0.06105
Iteration: 8, Log-Lik: -25409.087, Max-Change: 0.03879
Iteration: 9, Log-Lik: -25408.606, Max-Change: 0.02264
Iteration: 10, Log-Lik: -25408.307, Max-Change: 0.00782
Iteration: 11, Log-Lik: -25408.257, Max-Change: 0.00551
Iteration: 12, Log-Lik: -25408.232, Max-Change: 0.00444
Iteration: 13, Log-Lik: -25408.206, Max-Change: 0.00516
Iteration: 14, Log-Lik: -25408.205, Max-Change: 0.00055
Iteration: 15, Log-Lik: -25408.205, Max-Change: 0.00037
Iteration: 16, Log-Lik: -25408.205, Max-Change: 0.00035
Iteration: 17, Log-Lik: -25408.205, Max-Change: 0.00170
Iteration: 18, Log-Lik: -25408.204, Max-Change: 0.00120
Iteration: 19, Log-Lik: -25408.204, Max-Change: 0.00071
Iteration: 20, Log-Lik: -25408.204, Max-Change: 0.00042
Iteration: 21, Log-Lik: -25408.204, Max-Change: 0.00133
Iteration: 22, Log-Lik: -25408.204, Max-Change: 0.00210
Iteration: 23, Log-Lik: -25408.204, Max-Change: 0.00129
Iteration: 24, Log-Lik: -25408.204, Max-Change: 0.00079
Iteration: 25, Log-Lik: -25408.204, Max-Change: 0.00025
Iteration: 26, Log-Lik: -25408.204, Max-Change: 0.00097
Iteration: 27, Log-Lik: -25408.204, Max-Change: 0.00108
Iteration: 28, Log-Lik: -25408.204, Max-Change: 0.00027
Iteration: 29, Log-Lik: -25408.204, Max-Change: 0.00017
Iteration: 30, Log-Lik: -25408.204, Max-Change: 0.00074
Iteration: 31, Log-Lik: -25408.204, Max-Change: 0.00083
Iteration: 32, Log-Lik: -25408.204, Max-Change: 0.00051
Iteration: 33, Log-Lik: -25408.204, Max-Change: 0.00031
Iteration: 34, Log-Lik: -25408.204, Max-Change: 0.00011
Iteration: 35, Log-Lik: -25408.204, Max-Change: 0.00053
Iteration: 36, Log-Lik: -25408.204, Max-Change: 0.00039
Iteration: 37, Log-Lik: -25408.204, Max-Change: 0.00012
Iteration: 38, Log-Lik: -25408.204, Max-Change: 0.00008
## [1] "2PL ITERATION 7. STARTED WITH 230 ITEMS. 39 OUTLIERS REMOVED. 191 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -30451.398, Max-Change: 11.27658
Iteration: 2, Log-Lik: -22914.663, Max-Change: 5.28589
Iteration: 3, Log-Lik: -22353.638, Max-Change: 2.49154
Iteration: 4, Log-Lik: -22209.422, Max-Change: 0.40625
Iteration: 5, Log-Lik: -22173.918, Max-Change: 0.20508
Iteration: 6, Log-Lik: -22163.675, Max-Change: 0.09765
Iteration: 7, Log-Lik: -22160.478, Max-Change: 0.05748
Iteration: 8, Log-Lik: -22159.325, Max-Change: 0.03732
Iteration: 9, Log-Lik: -22158.882, Max-Change: 0.02109
Iteration: 10, Log-Lik: -22158.638, Max-Change: 0.01078
Iteration: 11, Log-Lik: -22158.580, Max-Change: 0.00752
Iteration: 12, Log-Lik: -22158.552, Max-Change: 0.00650
Iteration: 13, Log-Lik: -22158.526, Max-Change: 0.00201
Iteration: 14, Log-Lik: -22158.525, Max-Change: 0.00068
Iteration: 15, Log-Lik: -22158.524, Max-Change: 0.00052
Iteration: 16, Log-Lik: -22158.524, Max-Change: 0.00038
Iteration: 17, Log-Lik: -22158.524, Max-Change: 0.00036
Iteration: 18, Log-Lik: -22158.524, Max-Change: 0.00034
Iteration: 19, Log-Lik: -22158.524, Max-Change: 0.00036
Iteration: 20, Log-Lik: -22158.524, Max-Change: 0.00138
Iteration: 21, Log-Lik: -22158.524, Max-Change: 0.00117
Iteration: 22, Log-Lik: -22158.524, Max-Change: 0.00057
Iteration: 23, Log-Lik: -22158.524, Max-Change: 0.00029
Iteration: 24, Log-Lik: -22158.524, Max-Change: 0.00091
Iteration: 25, Log-Lik: -22158.524, Max-Change: 0.00106
Iteration: 26, Log-Lik: -22158.524, Max-Change: 0.00053
Iteration: 27, Log-Lik: -22158.524, Max-Change: 0.00027
Iteration: 28, Log-Lik: -22158.524, Max-Change: 0.00057
Iteration: 29, Log-Lik: -22158.524, Max-Change: 0.00061
Iteration: 30, Log-Lik: -22158.524, Max-Change: 0.00031
Iteration: 31, Log-Lik: -22158.524, Max-Change: 0.00013
Iteration: 32, Log-Lik: -22158.524, Max-Change: 0.00038
Iteration: 33, Log-Lik: -22158.524, Max-Change: 0.00044
Iteration: 34, Log-Lik: -22158.524, Max-Change: 0.00014
Iteration: 35, Log-Lik: -22158.524, Max-Change: 0.00007
## [1] "2PL ITERATION 8. STARTED WITH 191 ITEMS. 28 OUTLIERS REMOVED. 163 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -25220.018, Max-Change: 7.13564
Iteration: 2, Log-Lik: -19090.890, Max-Change: 3.11739
Iteration: 3, Log-Lik: -18712.306, Max-Change: 0.80648
Iteration: 4, Log-Lik: -18596.003, Max-Change: 0.40503
Iteration: 5, Log-Lik: -18564.436, Max-Change: 0.26498
Iteration: 6, Log-Lik: -18555.016, Max-Change: 0.16870
Iteration: 7, Log-Lik: -18552.149, Max-Change: 0.07010
Iteration: 8, Log-Lik: -18551.343, Max-Change: 0.04138
Iteration: 9, Log-Lik: -18551.066, Max-Change: 0.02556
Iteration: 10, Log-Lik: -18550.943, Max-Change: 0.01113
Iteration: 11, Log-Lik: -18550.920, Max-Change: 0.00828
Iteration: 12, Log-Lik: -18550.910, Max-Change: 0.00661
Iteration: 13, Log-Lik: -18550.902, Max-Change: 0.00226
Iteration: 14, Log-Lik: -18550.901, Max-Change: 0.00128
Iteration: 15, Log-Lik: -18550.901, Max-Change: 0.00066
Iteration: 16, Log-Lik: -18550.901, Max-Change: 0.00321
Iteration: 17, Log-Lik: -18550.901, Max-Change: 0.00054
Iteration: 18, Log-Lik: -18550.901, Max-Change: 0.00260
Iteration: 19, Log-Lik: -18550.901, Max-Change: 0.00141
Iteration: 20, Log-Lik: -18550.901, Max-Change: 0.00068
Iteration: 21, Log-Lik: -18550.901, Max-Change: 0.00037
Iteration: 22, Log-Lik: -18550.901, Max-Change: 0.00181
Iteration: 23, Log-Lik: -18550.901, Max-Change: 0.00148
Iteration: 24, Log-Lik: -18550.901, Max-Change: 0.00115
Iteration: 25, Log-Lik: -18550.901, Max-Change: 0.00039
Iteration: 26, Log-Lik: -18550.901, Max-Change: 0.00023
Iteration: 27, Log-Lik: -18550.901, Max-Change: 0.00109
Iteration: 28, Log-Lik: -18550.901, Max-Change: 0.00073
Iteration: 29, Log-Lik: -18550.901, Max-Change: 0.00036
Iteration: 30, Log-Lik: -18550.901, Max-Change: 0.00018
Iteration: 31, Log-Lik: -18550.901, Max-Change: 0.00090
Iteration: 32, Log-Lik: -18550.901, Max-Change: 0.00021
Iteration: 33, Log-Lik: -18550.901, Max-Change: 0.00016
Iteration: 34, Log-Lik: -18550.901, Max-Change: 0.00396
Iteration: 35, Log-Lik: -18550.901, Max-Change: 0.00015
Iteration: 36, Log-Lik: -18550.901, Max-Change: 0.00008
## [1] "2PL ITERATION 9. STARTED WITH 163 ITEMS. 32 OUTLIERS REMOVED. 131 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -20755.431, Max-Change: 7.42563
Iteration: 2, Log-Lik: -15734.121, Max-Change: 3.62409
Iteration: 3, Log-Lik: -15430.653, Max-Change: 0.56921
Iteration: 4, Log-Lik: -15310.520, Max-Change: 0.41213
Iteration: 5, Log-Lik: -15274.828, Max-Change: 0.28214
Iteration: 6, Log-Lik: -15265.083, Max-Change: 0.16768
Iteration: 7, Log-Lik: -15262.306, Max-Change: 0.08792
Iteration: 8, Log-Lik: -15261.448, Max-Change: 0.05184
Iteration: 9, Log-Lik: -15261.183, Max-Change: 0.03241
Iteration: 10, Log-Lik: -15261.077, Max-Change: 0.01020
Iteration: 11, Log-Lik: -15261.059, Max-Change: 0.00716
Iteration: 12, Log-Lik: -15261.051, Max-Change: 0.00481
Iteration: 13, Log-Lik: -15261.047, Max-Change: 0.00189
Iteration: 14, Log-Lik: -15261.046, Max-Change: 0.00155
Iteration: 15, Log-Lik: -15261.046, Max-Change: 0.00079
Iteration: 16, Log-Lik: -15261.046, Max-Change: 0.00058
Iteration: 17, Log-Lik: -15261.046, Max-Change: 0.00250
Iteration: 18, Log-Lik: -15261.046, Max-Change: 0.00045
Iteration: 19, Log-Lik: -15261.046, Max-Change: 0.00035
Iteration: 20, Log-Lik: -15261.046, Max-Change: 0.00138
Iteration: 21, Log-Lik: -15261.046, Max-Change: 0.00118
Iteration: 22, Log-Lik: -15261.046, Max-Change: 0.00058
Iteration: 23, Log-Lik: -15261.046, Max-Change: 0.00029
Iteration: 24, Log-Lik: -15261.046, Max-Change: 0.00088
Iteration: 25, Log-Lik: -15261.046, Max-Change: 0.00109
Iteration: 26, Log-Lik: -15261.046, Max-Change: 0.00055
Iteration: 27, Log-Lik: -15261.046, Max-Change: 0.00028
Iteration: 28, Log-Lik: -15261.046, Max-Change: 0.00012
Iteration: 29, Log-Lik: -15261.046, Max-Change: 0.00055
Iteration: 30, Log-Lik: -15261.046, Max-Change: 0.00036
Iteration: 31, Log-Lik: -15261.046, Max-Change: 0.00015
Iteration: 32, Log-Lik: -15261.046, Max-Change: 0.00008
## [1] "2PL ITERATION 10. STARTED WITH 131 ITEMS. 20 OUTLIERS REMOVED. 111 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -16819.832, Max-Change: 4.17858
Iteration: 2, Log-Lik: -12669.272, Max-Change: 0.69354
Iteration: 3, Log-Lik: -12476.925, Max-Change: 0.52033
Iteration: 4, Log-Lik: -12377.972, Max-Change: 0.38544
Iteration: 5, Log-Lik: -12343.679, Max-Change: 0.28241
Iteration: 6, Log-Lik: -12332.346, Max-Change: 0.18793
Iteration: 7, Log-Lik: -12328.726, Max-Change: 0.10345
Iteration: 8, Log-Lik: -12327.576, Max-Change: 0.07174
Iteration: 9, Log-Lik: -12327.171, Max-Change: 0.04023
Iteration: 10, Log-Lik: -12327.077, Max-Change: 0.03081
Iteration: 11, Log-Lik: -12327.018, Max-Change: 0.01605
Iteration: 12, Log-Lik: -12326.998, Max-Change: 0.00897
Iteration: 13, Log-Lik: -12326.990, Max-Change: 0.00548
Iteration: 14, Log-Lik: -12326.987, Max-Change: 0.00345
Iteration: 15, Log-Lik: -12326.986, Max-Change: 0.00264
Iteration: 16, Log-Lik: -12326.985, Max-Change: 0.00070
Iteration: 17, Log-Lik: -12326.985, Max-Change: 0.00050
Iteration: 18, Log-Lik: -12326.985, Max-Change: 0.00203
Iteration: 19, Log-Lik: -12326.985, Max-Change: 0.00021
Iteration: 20, Log-Lik: -12326.985, Max-Change: 0.00010
## [1] "2PL ITERATION 11. STARTED WITH 111 ITEMS. 29 OUTLIERS REMOVED. 82 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -12921.114, Max-Change: 4.76466
Iteration: 2, Log-Lik: -9751.355, Max-Change: 0.49754
Iteration: 3, Log-Lik: -9646.140, Max-Change: 0.46677
Iteration: 4, Log-Lik: -9560.923, Max-Change: 0.42047
Iteration: 5, Log-Lik: -9521.365, Max-Change: 0.33729
Iteration: 6, Log-Lik: -9506.878, Max-Change: 0.21098
Iteration: 7, Log-Lik: -9501.494, Max-Change: 0.13953
Iteration: 8, Log-Lik: -9499.511, Max-Change: 0.08745
Iteration: 9, Log-Lik: -9498.799, Max-Change: 0.05349
Iteration: 10, Log-Lik: -9498.444, Max-Change: 0.02447
Iteration: 11, Log-Lik: -9498.392, Max-Change: 0.01637
Iteration: 12, Log-Lik: -9498.372, Max-Change: 0.01307
Iteration: 13, Log-Lik: -9498.360, Max-Change: 0.00755
Iteration: 14, Log-Lik: -9498.358, Max-Change: 0.00520
Iteration: 15, Log-Lik: -9498.357, Max-Change: 0.00370
Iteration: 16, Log-Lik: -9498.356, Max-Change: 0.00121
Iteration: 17, Log-Lik: -9498.356, Max-Change: 0.00069
Iteration: 18, Log-Lik: -9498.355, Max-Change: 0.00252
Iteration: 19, Log-Lik: -9498.355, Max-Change: 0.00019
Iteration: 20, Log-Lik: -9498.355, Max-Change: 0.00057
Iteration: 21, Log-Lik: -9498.355, Max-Change: 0.00007
## [1] "2PL ITERATION 12. STARTED WITH 82 ITEMS. 18 OUTLIERS REMOVED. 64 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -10009.069, Max-Change: 4.18687
Iteration: 2, Log-Lik: -7688.959, Max-Change: 0.39223
Iteration: 3, Log-Lik: -7634.001, Max-Change: 0.45997
Iteration: 4, Log-Lik: -7576.194, Max-Change: 0.39127
Iteration: 5, Log-Lik: -7539.885, Max-Change: 0.30838
Iteration: 6, Log-Lik: -7522.320, Max-Change: 0.24503
Iteration: 7, Log-Lik: -7514.883, Max-Change: 0.18984
Iteration: 8, Log-Lik: -7511.654, Max-Change: 0.12354
Iteration: 9, Log-Lik: -7510.376, Max-Change: 0.07190
Iteration: 10, Log-Lik: -7509.656, Max-Change: 0.03624
Iteration: 11, Log-Lik: -7509.562, Max-Change: 0.02630
Iteration: 12, Log-Lik: -7509.517, Max-Change: 0.01971
Iteration: 13, Log-Lik: -7509.489, Max-Change: 0.00663
Iteration: 14, Log-Lik: -7509.485, Max-Change: 0.00523
Iteration: 15, Log-Lik: -7509.483, Max-Change: 0.00398
Iteration: 16, Log-Lik: -7509.481, Max-Change: 0.00065
Iteration: 17, Log-Lik: -7509.481, Max-Change: 0.00056
Iteration: 18, Log-Lik: -7509.480, Max-Change: 0.00049
Iteration: 19, Log-Lik: -7509.480, Max-Change: 0.00078
Iteration: 20, Log-Lik: -7509.480, Max-Change: 0.00014
Iteration: 21, Log-Lik: -7509.480, Max-Change: 0.00007
## [1] "2PL ITERATION 13. STARTED WITH 64 ITEMS. 19 OUTLIERS REMOVED. 45 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -7135.176, Max-Change: 3.28252
Iteration: 2, Log-Lik: -5476.342, Max-Change: 0.25885
Iteration: 3, Log-Lik: -5458.442, Max-Change: 0.33202
Iteration: 4, Log-Lik: -5435.990, Max-Change: 0.29978
Iteration: 5, Log-Lik: -5414.777, Max-Change: 0.26524
Iteration: 6, Log-Lik: -5400.050, Max-Change: 0.22590
Iteration: 7, Log-Lik: -5391.739, Max-Change: 0.20171
Iteration: 8, Log-Lik: -5387.367, Max-Change: 0.15274
Iteration: 9, Log-Lik: -5385.323, Max-Change: 0.11698
Iteration: 10, Log-Lik: -5384.367, Max-Change: 0.08408
Iteration: 11, Log-Lik: -5383.915, Max-Change: 0.05310
Iteration: 12, Log-Lik: -5383.711, Max-Change: 0.03829
Iteration: 13, Log-Lik: -5383.589, Max-Change: 0.02026
Iteration: 14, Log-Lik: -5383.565, Max-Change: 0.01736
Iteration: 15, Log-Lik: -5383.553, Max-Change: 0.01375
Iteration: 16, Log-Lik: -5383.542, Max-Change: 0.00651
Iteration: 17, Log-Lik: -5383.540, Max-Change: 0.00619
Iteration: 18, Log-Lik: -5383.540, Max-Change: 0.00497
Iteration: 19, Log-Lik: -5383.539, Max-Change: 0.00100
Iteration: 20, Log-Lik: -5383.538, Max-Change: 0.00085
Iteration: 21, Log-Lik: -5383.538, Max-Change: 0.00076
Iteration: 22, Log-Lik: -5383.538, Max-Change: 0.00045
Iteration: 23, Log-Lik: -5383.538, Max-Change: 0.00039
Iteration: 24, Log-Lik: -5383.538, Max-Change: 0.00035
Iteration: 25, Log-Lik: -5383.538, Max-Change: 0.00013
Iteration: 26, Log-Lik: -5383.538, Max-Change: 0.00056
Iteration: 27, Log-Lik: -5383.538, Max-Change: 0.00029
Iteration: 28, Log-Lik: -5383.538, Max-Change: 0.00006
## [1] "2PL ITERATION 14. STARTED WITH 45 ITEMS. 12 OUTLIERS REMOVED. 33 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -5295.646, Max-Change: 6.66456
Iteration: 2, Log-Lik: -4051.365, Max-Change: 1.26485
Iteration: 3, Log-Lik: -4043.236, Max-Change: 0.26461
Iteration: 4, Log-Lik: -4032.323, Max-Change: 0.25731
Iteration: 5, Log-Lik: -4019.489, Max-Change: 0.23621
Iteration: 6, Log-Lik: -4007.469, Max-Change: 0.22204
Iteration: 7, Log-Lik: -3998.488, Max-Change: 0.19847
Iteration: 8, Log-Lik: -3992.816, Max-Change: 0.16280
Iteration: 9, Log-Lik: -3989.658, Max-Change: 0.13250
Iteration: 10, Log-Lik: -3987.876, Max-Change: 0.11149
Iteration: 11, Log-Lik: -3986.946, Max-Change: 0.10684
Iteration: 12, Log-Lik: -3986.474, Max-Change: 0.10070
Iteration: 13, Log-Lik: -3986.002, Max-Change: 0.29860
Iteration: 14, Log-Lik: -3985.991, Max-Change: 0.03843
Iteration: 15, Log-Lik: -3985.985, Max-Change: 0.00677
Iteration: 16, Log-Lik: -3985.984, Max-Change: 0.00664
Iteration: 17, Log-Lik: -3985.982, Max-Change: 0.00588
Iteration: 18, Log-Lik: -3985.981, Max-Change: 0.00509
Iteration: 19, Log-Lik: -3985.980, Max-Change: 0.00334
Iteration: 20, Log-Lik: -3985.980, Max-Change: 0.00051
Iteration: 21, Log-Lik: -3985.980, Max-Change: 0.00255
Iteration: 22, Log-Lik: -3985.980, Max-Change: 0.00051
Iteration: 23, Log-Lik: -3985.980, Max-Change: 0.01270
Iteration: 24, Log-Lik: -3985.980, Max-Change: 0.00328
Iteration: 25, Log-Lik: -3985.980, Max-Change: 0.00090
Iteration: 26, Log-Lik: -3985.980, Max-Change: 0.00050
Iteration: 27, Log-Lik: -3985.980, Max-Change: 0.00250
Iteration: 28, Log-Lik: -3985.980, Max-Change: 0.00050
Iteration: 29, Log-Lik: -3985.980, Max-Change: 0.00249
Iteration: 30, Log-Lik: -3985.980, Max-Change: 0.00249
Iteration: 31, Log-Lik: -3985.980, Max-Change: 0.00060
Iteration: 32, Log-Lik: -3985.980, Max-Change: 0.00248
Iteration: 33, Log-Lik: -3985.980, Max-Change: 0.00049
Iteration: 34, Log-Lik: -3985.980, Max-Change: 0.00049
Iteration: 35, Log-Lik: -3985.980, Max-Change: 0.00247
Iteration: 36, Log-Lik: -3985.980, Max-Change: 0.00246
Iteration: 37, Log-Lik: -3985.979, Max-Change: 0.00067
Iteration: 38, Log-Lik: -3985.979, Max-Change: 0.00246
Iteration: 39, Log-Lik: -3985.979, Max-Change: 0.00049
Iteration: 40, Log-Lik: -3985.979, Max-Change: 0.00049
Iteration: 41, Log-Lik: -3985.979, Max-Change: 0.00245
Iteration: 42, Log-Lik: -3985.979, Max-Change: 0.00049
Iteration: 43, Log-Lik: -3985.979, Max-Change: 0.00244
Iteration: 44, Log-Lik: -3985.979, Max-Change: 0.00059
Iteration: 45, Log-Lik: -3985.979, Max-Change: 0.00244
Iteration: 46, Log-Lik: -3985.979, Max-Change: 0.00068
Iteration: 47, Log-Lik: -3985.979, Max-Change: 0.00243
Iteration: 48, Log-Lik: -3985.979, Max-Change: 0.00050
Iteration: 49, Log-Lik: -3985.979, Max-Change: 0.00048
Iteration: 50, Log-Lik: -3985.979, Max-Change: 0.00242
Iteration: 51, Log-Lik: -3985.979, Max-Change: 0.00048
Iteration: 52, Log-Lik: -3985.979, Max-Change: 0.00241
Iteration: 53, Log-Lik: -3985.979, Max-Change: 0.00059
Iteration: 54, Log-Lik: -3985.979, Max-Change: 0.00241
Iteration: 55, Log-Lik: -3985.979, Max-Change: 0.00069
Iteration: 56, Log-Lik: -3985.979, Max-Change: 0.00240
Iteration: 57, Log-Lik: -3985.979, Max-Change: 0.00051
Iteration: 58, Log-Lik: -3985.979, Max-Change: 0.00048
Iteration: 59, Log-Lik: -3985.979, Max-Change: 0.00239
Iteration: 60, Log-Lik: -3985.979, Max-Change: 0.00048
Iteration: 61, Log-Lik: -3985.979, Max-Change: 0.00238
Iteration: 62, Log-Lik: -3985.979, Max-Change: 0.00061
Iteration: 63, Log-Lik: -3985.979, Max-Change: 0.00238
Iteration: 64, Log-Lik: -3985.979, Max-Change: 0.00073
Iteration: 65, Log-Lik: -3985.979, Max-Change: 0.00237
Iteration: 66, Log-Lik: -3985.979, Max-Change: 0.00054
Iteration: 67, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 68, Log-Lik: -3985.979, Max-Change: 0.00236
Iteration: 69, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 70, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 71, Log-Lik: -3985.979, Max-Change: 0.00235
Iteration: 72, Log-Lik: -3985.979, Max-Change: 0.00235
Iteration: 73, Log-Lik: -3985.979, Max-Change: 0.00052
Iteration: 74, Log-Lik: -3985.979, Max-Change: 0.00234
Iteration: 75, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 76, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 77, Log-Lik: -3985.979, Max-Change: 0.00233
Iteration: 78, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 79, Log-Lik: -3985.979, Max-Change: 0.00233
Iteration: 80, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 81, Log-Lik: -3985.979, Max-Change: 0.00232
Iteration: 82, Log-Lik: -3985.979, Max-Change: 0.00059
Iteration: 83, Log-Lik: -3985.979, Max-Change: 0.00231
Iteration: 84, Log-Lik: -3985.979, Max-Change: 0.00047
Iteration: 85, Log-Lik: -3985.979, Max-Change: 0.00046
Iteration: 86, Log-Lik: -3985.979, Max-Change: 0.00231
Iteration: 87, Log-Lik: -3985.979, Max-Change: 0.00046
Iteration: 88, Log-Lik: -3985.979, Max-Change: 0.00230
Iteration: 89, Log-Lik: -3985.979, Max-Change: 0.00054
Iteration: 90, Log-Lik: -3985.979, Max-Change: 0.00229
Iteration: 91, Log-Lik: -3985.979, Max-Change: 0.00071
Iteration: 92, Log-Lik: -3985.979, Max-Change: 0.00228
Iteration: 93, Log-Lik: -3985.979, Max-Change: 0.00057
Iteration: 94, Log-Lik: -3985.979, Max-Change: 0.00046
Iteration: 95, Log-Lik: -3985.979, Max-Change: 0.00228
Iteration: 96, Log-Lik: -3985.979, Max-Change: 0.00045
Iteration: 97, Log-Lik: -3985.979, Max-Change: 0.00045
Iteration: 98, Log-Lik: -3985.979, Max-Change: 0.00227
Iteration: 99, Log-Lik: -3985.979, Max-Change: 0.00227
Iteration: 100, Log-Lik: -3985.979, Max-Change: 0.00054
Iteration: 101, Log-Lik: -3985.978, Max-Change: 0.00226
Iteration: 102, Log-Lik: -3985.978, Max-Change: 0.00045
Iteration: 103, Log-Lik: -3985.978, Max-Change: 0.00045
Iteration: 104, Log-Lik: -3985.978, Max-Change: 0.00225
Iteration: 105, Log-Lik: -3985.978, Max-Change: 0.00045
Iteration: 106, Log-Lik: -3985.978, Max-Change: 0.00225
Iteration: 107, Log-Lik: -3985.978, Max-Change: 0.00050
Iteration: 108, Log-Lik: -3985.978, Max-Change: 0.00224
Iteration: 109, Log-Lik: -3985.978, Max-Change: 0.00064
Iteration: 110, Log-Lik: -3985.978, Max-Change: 0.00223
Iteration: 111, Log-Lik: -3985.978, Max-Change: 0.00051
Iteration: 112, Log-Lik: -3985.978, Max-Change: 0.00045
Iteration: 113, Log-Lik: -3985.978, Max-Change: 0.00223
Iteration: 114, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 115, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 116, Log-Lik: -3985.978, Max-Change: 0.00222
Iteration: 117, Log-Lik: -3985.978, Max-Change: 0.00222
Iteration: 118, Log-Lik: -3985.978, Max-Change: 0.00054
Iteration: 119, Log-Lik: -3985.978, Max-Change: 0.00221
Iteration: 120, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 121, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 122, Log-Lik: -3985.978, Max-Change: 0.00220
Iteration: 123, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 124, Log-Lik: -3985.978, Max-Change: 0.00220
Iteration: 125, Log-Lik: -3985.978, Max-Change: 0.00050
Iteration: 126, Log-Lik: -3985.978, Max-Change: 0.00219
Iteration: 127, Log-Lik: -3985.978, Max-Change: 0.00063
Iteration: 128, Log-Lik: -3985.978, Max-Change: 0.00218
Iteration: 129, Log-Lik: -3985.978, Max-Change: 0.00050
Iteration: 130, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 131, Log-Lik: -3985.978, Max-Change: 0.00218
Iteration: 132, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 133, Log-Lik: -3985.978, Max-Change: 0.00217
Iteration: 134, Log-Lik: -3985.978, Max-Change: 0.00058
Iteration: 135, Log-Lik: -3985.978, Max-Change: 0.00217
Iteration: 136, Log-Lik: -3985.978, Max-Change: 0.00077
Iteration: 137, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 138, Log-Lik: -3985.978, Max-Change: 0.00216
Iteration: 139, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 140, Log-Lik: -3985.978, Max-Change: 0.00215
Iteration: 141, Log-Lik: -3985.978, Max-Change: 0.00215
Iteration: 142, Log-Lik: -3985.978, Max-Change: 0.00056
Iteration: 143, Log-Lik: -3985.978, Max-Change: 0.00214
Iteration: 144, Log-Lik: -3985.978, Max-Change: 0.00044
Iteration: 145, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 146, Log-Lik: -3985.978, Max-Change: 0.00214
Iteration: 147, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 148, Log-Lik: -3985.978, Max-Change: 0.00213
Iteration: 149, Log-Lik: -3985.978, Max-Change: 0.00052
Iteration: 150, Log-Lik: -3985.978, Max-Change: 0.00213
Iteration: 151, Log-Lik: -3985.978, Max-Change: 0.00066
Iteration: 152, Log-Lik: -3985.978, Max-Change: 0.00212
Iteration: 153, Log-Lik: -3985.978, Max-Change: 0.00053
Iteration: 154, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 155, Log-Lik: -3985.978, Max-Change: 0.00211
Iteration: 156, Log-Lik: -3985.978, Max-Change: 0.00042
Iteration: 157, Log-Lik: -3985.978, Max-Change: 0.00042
Iteration: 158, Log-Lik: -3985.978, Max-Change: 0.00211
Iteration: 159, Log-Lik: -3985.978, Max-Change: 0.00210
Iteration: 160, Log-Lik: -3985.978, Max-Change: 0.00054
Iteration: 161, Log-Lik: -3985.978, Max-Change: 0.00210
Iteration: 162, Log-Lik: -3985.978, Max-Change: 0.00043
Iteration: 163, Log-Lik: -3985.978, Max-Change: 0.00042
Iteration: 164, Log-Lik: -3985.978, Max-Change: 0.00209
Iteration: 165, Log-Lik: -3985.978, Max-Change: 0.00042
Iteration: 166, Log-Lik: -3985.978, Max-Change: 0.00209
Iteration: 167, Log-Lik: -3985.978, Max-Change: 0.00050
Iteration: 168, Log-Lik: -3985.978, Max-Change: 0.00208
Iteration: 169, Log-Lik: -3985.978, Max-Change: 0.00064
Iteration: 170, Log-Lik: -3985.978, Max-Change: 0.00207
Iteration: 171, Log-Lik: -3985.978, Max-Change: 0.00051
Iteration: 172, Log-Lik: -3985.978, Max-Change: 0.00041
Iteration: 173, Log-Lik: -3985.978, Max-Change: 0.00207
Iteration: 174, Log-Lik: -3985.978, Max-Change: 0.00041
Iteration: 175, Log-Lik: -3985.978, Max-Change: 0.00206
Iteration: 176, Log-Lik: -3985.978, Max-Change: 0.00059
Iteration: 177, Log-Lik: -3985.977, Max-Change: 0.00206
Iteration: 178, Log-Lik: -3985.977, Max-Change: 0.00078
Iteration: 179, Log-Lik: -3985.977, Max-Change: 0.00041
Iteration: 180, Log-Lik: -3985.977, Max-Change: 0.00205
Iteration: 181, Log-Lik: -3985.977, Max-Change: 0.00041
Iteration: 182, Log-Lik: -3985.977, Max-Change: 0.00205
Iteration: 183, Log-Lik: -3985.977, Max-Change: 0.00204
Iteration: 184, Log-Lik: -3985.977, Max-Change: 0.00056
Iteration: 185, Log-Lik: -3985.977, Max-Change: 0.00204
Iteration: 186, Log-Lik: -3985.977, Max-Change: 0.00044
Iteration: 187, Log-Lik: -3985.977, Max-Change: 0.00041
Iteration: 188, Log-Lik: -3985.977, Max-Change: 0.00203
Iteration: 189, Log-Lik: -3985.977, Max-Change: 0.00041
Iteration: 190, Log-Lik: -3985.977, Max-Change: 0.00203
Iteration: 191, Log-Lik: -3985.977, Max-Change: 0.00052
Iteration: 192, Log-Lik: -3985.977, Max-Change: 0.00202
Iteration: 193, Log-Lik: -3985.977, Max-Change: 0.00066
Iteration: 194, Log-Lik: -3985.977, Max-Change: 0.00201
Iteration: 195, Log-Lik: -3985.977, Max-Change: 0.00052
Iteration: 196, Log-Lik: -3985.977, Max-Change: 0.00043
Iteration: 197, Log-Lik: -3985.977, Max-Change: 0.00201
Iteration: 198, Log-Lik: -3985.977, Max-Change: 0.00040
Iteration: 199, Log-Lik: -3985.977, Max-Change: 0.00040
Iteration: 200, Log-Lik: -3985.977, Max-Change: 0.00200
Iteration: 201, Log-Lik: -3985.977, Max-Change: 0.00200
Iteration: 202, Log-Lik: -3985.977, Max-Change: 0.00054
Iteration: 203, Log-Lik: -3985.977, Max-Change: 0.00200
Iteration: 204, Log-Lik: -3985.977, Max-Change: 0.00043
Iteration: 205, Log-Lik: -3985.977, Max-Change: 0.00040
Iteration: 206, Log-Lik: -3985.977, Max-Change: 0.00199
Iteration: 207, Log-Lik: -3985.977, Max-Change: 0.00199
Iteration: 208, Log-Lik: -3985.977, Max-Change: 0.00056
Iteration: 209, Log-Lik: -3985.977, Max-Change: 0.00198
Iteration: 210, Log-Lik: -3985.977, Max-Change: 0.00044
Iteration: 211, Log-Lik: -3985.977, Max-Change: 0.00040
Iteration: 212, Log-Lik: -3985.977, Max-Change: 0.00198
Iteration: 213, Log-Lik: -3985.977, Max-Change: 0.00039
Iteration: 214, Log-Lik: -3985.977, Max-Change: 0.00197
Iteration: 215, Log-Lik: -3985.977, Max-Change: 0.00052
Iteration: 216, Log-Lik: -3985.977, Max-Change: 0.00197
Iteration: 217, Log-Lik: -3985.977, Max-Change: 0.00067
Iteration: 218, Log-Lik: -3985.977, Max-Change: 0.00196
Iteration: 219, Log-Lik: -3985.977, Max-Change: 0.00053
Iteration: 220, Log-Lik: -3985.977, Max-Change: 0.00043
Iteration: 221, Log-Lik: -3985.977, Max-Change: 0.00196
Iteration: 222, Log-Lik: -3985.977, Max-Change: 0.00039
Iteration: 223, Log-Lik: -3985.977, Max-Change: 0.00039
Iteration: 224, Log-Lik: -3985.977, Max-Change: 0.00195
Iteration: 225, Log-Lik: -3985.977, Max-Change: 0.00195
Iteration: 226, Log-Lik: -3985.977, Max-Change: 0.00053
Iteration: 227, Log-Lik: -3985.977, Max-Change: 0.00194
Iteration: 228, Log-Lik: -3985.977, Max-Change: 0.00042
Iteration: 229, Log-Lik: -3985.977, Max-Change: 0.00039
Iteration: 230, Log-Lik: -3985.977, Max-Change: 0.00194
Iteration: 231, Log-Lik: -3985.977, Max-Change: 0.00193
Iteration: 232, Log-Lik: -3985.977, Max-Change: 0.00055
Iteration: 233, Log-Lik: -3985.977, Max-Change: 0.00193
Iteration: 234, Log-Lik: -3985.977, Max-Change: 0.00044
Iteration: 235, Log-Lik: -3985.977, Max-Change: 0.00039
Iteration: 236, Log-Lik: -3985.977, Max-Change: 0.00193
Iteration: 237, Log-Lik: -3985.977, Max-Change: 0.00038
Iteration: 238, Log-Lik: -3985.977, Max-Change: 0.00192
Iteration: 239, Log-Lik: -3985.977, Max-Change: 0.00051
Iteration: 240, Log-Lik: -3985.977, Max-Change: 0.00192
Iteration: 241, Log-Lik: -3985.977, Max-Change: 0.00066
Iteration: 242, Log-Lik: -3985.977, Max-Change: 0.00191
Iteration: 243, Log-Lik: -3985.977, Max-Change: 0.00052
Iteration: 244, Log-Lik: -3985.977, Max-Change: 0.00043
Iteration: 245, Log-Lik: -3985.977, Max-Change: 0.00191
Iteration: 246, Log-Lik: -3985.977, Max-Change: 0.00038
Iteration: 247, Log-Lik: -3985.977, Max-Change: 0.00038
Iteration: 248, Log-Lik: -3985.977, Max-Change: 0.00190
Iteration: 249, Log-Lik: -3985.977, Max-Change: 0.00190
Iteration: 250, Log-Lik: -3985.977, Max-Change: 0.00052
Iteration: 251, Log-Lik: -3985.977, Max-Change: 0.00189
Iteration: 252, Log-Lik: -3985.977, Max-Change: 0.00041
Iteration: 253, Log-Lik: -3985.977, Max-Change: 0.00038
Iteration: 254, Log-Lik: -3985.977, Max-Change: 0.00189
Iteration: 255, Log-Lik: -3985.977, Max-Change: 0.00038
Iteration: 256, Log-Lik: -3985.977, Max-Change: 0.00189
Iteration: 257, Log-Lik: -3985.977, Max-Change: 0.00048
Iteration: 258, Log-Lik: -3985.977, Max-Change: 0.00188
Iteration: 259, Log-Lik: -3985.977, Max-Change: 0.00062
Iteration: 260, Log-Lik: -3985.977, Max-Change: 0.00188
Iteration: 261, Log-Lik: -3985.977, Max-Change: 0.00049
Iteration: 262, Log-Lik: -3985.977, Max-Change: 0.00040
Iteration: 263, Log-Lik: -3985.977, Max-Change: 0.00187
Iteration: 264, Log-Lik: -3985.977, Max-Change: 0.00037
Iteration: 265, Log-Lik: -3985.977, Max-Change: 0.00187
Iteration: 266, Log-Lik: -3985.977, Max-Change: 0.00057
Iteration: 267, Log-Lik: -3985.977, Max-Change: 0.00186
Iteration: 268, Log-Lik: -3985.977, Max-Change: 0.00076
Iteration: 269, Log-Lik: -3985.976, Max-Change: 0.00037
Iteration: 270, Log-Lik: -3985.976, Max-Change: 0.00186
Iteration: 271, Log-Lik: -3985.976, Max-Change: 0.00037
Iteration: 272, Log-Lik: -3985.976, Max-Change: 0.00185
Iteration: 273, Log-Lik: -3985.976, Max-Change: 0.00185
Iteration: 274, Log-Lik: -3985.976, Max-Change: 0.00053
Iteration: 275, Log-Lik: -3985.976, Max-Change: 0.00184
Iteration: 276, Log-Lik: -3985.976, Max-Change: 0.00042
Iteration: 277, Log-Lik: -3985.976, Max-Change: 0.00037
Iteration: 278, Log-Lik: -3985.976, Max-Change: 0.00184
Iteration: 279, Log-Lik: -3985.976, Max-Change: 0.00037
Iteration: 280, Log-Lik: -3985.976, Max-Change: 0.00184
Iteration: 281, Log-Lik: -3985.976, Max-Change: 0.00049
Iteration: 282, Log-Lik: -3985.976, Max-Change: 0.00183
Iteration: 283, Log-Lik: -3985.976, Max-Change: 0.00064
Iteration: 284, Log-Lik: -3985.976, Max-Change: 0.00183
Iteration: 285, Log-Lik: -3985.976, Max-Change: 0.00050
Iteration: 286, Log-Lik: -3985.976, Max-Change: 0.00041
Iteration: 287, Log-Lik: -3985.976, Max-Change: 0.00182
Iteration: 288, Log-Lik: -3985.976, Max-Change: 0.00036
Iteration: 289, Log-Lik: -3985.976, Max-Change: 0.00182
Iteration: 290, Log-Lik: -3985.976, Max-Change: 0.00058
Iteration: 291, Log-Lik: -3985.976, Max-Change: 0.00181
Iteration: 292, Log-Lik: -3985.976, Max-Change: 0.00079
Iteration: 293, Log-Lik: -3985.976, Max-Change: 0.00036
Iteration: 294, Log-Lik: -3985.976, Max-Change: 0.00181
Iteration: 295, Log-Lik: -3985.976, Max-Change: 0.00036
Iteration: 296, Log-Lik: -3985.976, Max-Change: 0.00180
Iteration: 297, Log-Lik: -3985.976, Max-Change: 0.00180
Iteration: 298, Log-Lik: -3985.976, Max-Change: 0.00054
Iteration: 299, Log-Lik: -3985.976, Max-Change: 0.00180
Iteration: 300, Log-Lik: -3985.976, Max-Change: 0.00043
Iteration: 301, Log-Lik: -3985.976, Max-Change: 0.00036
Iteration: 302, Log-Lik: -3985.976, Max-Change: 0.00179
Iteration: 303, Log-Lik: -3985.976, Max-Change: 0.00036
Iteration: 304, Log-Lik: -3985.976, Max-Change: 0.00179
Iteration: 305, Log-Lik: -3985.976, Max-Change: 0.00050
Iteration: 306, Log-Lik: -3985.976, Max-Change: 0.00179
Iteration: 307, Log-Lik: -3985.976, Max-Change: 0.00064
Iteration: 308, Log-Lik: -3985.976, Max-Change: 0.00178
Iteration: 309, Log-Lik: -3985.976, Max-Change: 0.00051
Iteration: 310, Log-Lik: -3985.976, Max-Change: 0.00041
Iteration: 311, Log-Lik: -3985.976, Max-Change: 0.00178
Iteration: 312, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 313, Log-Lik: -3985.976, Max-Change: 0.00177
Iteration: 314, Log-Lik: -3985.976, Max-Change: 0.00059
Iteration: 315, Log-Lik: -3985.976, Max-Change: 0.00177
Iteration: 316, Log-Lik: -3985.976, Max-Change: 0.00080
Iteration: 317, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 318, Log-Lik: -3985.976, Max-Change: 0.00176
Iteration: 319, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 320, Log-Lik: -3985.976, Max-Change: 0.00176
Iteration: 321, Log-Lik: -3985.976, Max-Change: 0.00176
Iteration: 322, Log-Lik: -3985.976, Max-Change: 0.00054
Iteration: 323, Log-Lik: -3985.976, Max-Change: 0.00175
Iteration: 324, Log-Lik: -3985.976, Max-Change: 0.00043
Iteration: 325, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 326, Log-Lik: -3985.976, Max-Change: 0.00175
Iteration: 327, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 328, Log-Lik: -3985.976, Max-Change: 0.00174
Iteration: 329, Log-Lik: -3985.976, Max-Change: 0.00050
Iteration: 330, Log-Lik: -3985.976, Max-Change: 0.00174
Iteration: 331, Log-Lik: -3985.976, Max-Change: 0.00064
Iteration: 332, Log-Lik: -3985.976, Max-Change: 0.00174
Iteration: 333, Log-Lik: -3985.976, Max-Change: 0.00051
Iteration: 334, Log-Lik: -3985.976, Max-Change: 0.00041
Iteration: 335, Log-Lik: -3985.976, Max-Change: 0.00173
Iteration: 336, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 337, Log-Lik: -3985.976, Max-Change: 0.00173
Iteration: 338, Log-Lik: -3985.976, Max-Change: 0.00059
Iteration: 339, Log-Lik: -3985.976, Max-Change: 0.00173
Iteration: 340, Log-Lik: -3985.976, Max-Change: 0.00080
Iteration: 341, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 342, Log-Lik: -3985.976, Max-Change: 0.00172
Iteration: 343, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 344, Log-Lik: -3985.976, Max-Change: 0.00172
Iteration: 345, Log-Lik: -3985.976, Max-Change: 0.00171
Iteration: 346, Log-Lik: -3985.976, Max-Change: 0.00053
Iteration: 347, Log-Lik: -3985.976, Max-Change: 0.00171
Iteration: 348, Log-Lik: -3985.976, Max-Change: 0.00042
Iteration: 349, Log-Lik: -3985.976, Max-Change: 0.00035
Iteration: 350, Log-Lik: -3985.976, Max-Change: 0.00171
Iteration: 351, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 352, Log-Lik: -3985.976, Max-Change: 0.00170
Iteration: 353, Log-Lik: -3985.976, Max-Change: 0.00049
Iteration: 354, Log-Lik: -3985.976, Max-Change: 0.00170
Iteration: 355, Log-Lik: -3985.976, Max-Change: 0.00064
Iteration: 356, Log-Lik: -3985.976, Max-Change: 0.00169
Iteration: 357, Log-Lik: -3985.976, Max-Change: 0.00051
Iteration: 358, Log-Lik: -3985.976, Max-Change: 0.00041
Iteration: 359, Log-Lik: -3985.976, Max-Change: 0.00169
Iteration: 360, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 361, Log-Lik: -3985.976, Max-Change: 0.00169
Iteration: 362, Log-Lik: -3985.976, Max-Change: 0.00059
Iteration: 363, Log-Lik: -3985.976, Max-Change: 0.00168
Iteration: 364, Log-Lik: -3985.976, Max-Change: 0.00079
Iteration: 365, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 366, Log-Lik: -3985.976, Max-Change: 0.00168
Iteration: 367, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 368, Log-Lik: -3985.976, Max-Change: 0.00167
Iteration: 369, Log-Lik: -3985.976, Max-Change: 0.00167
Iteration: 370, Log-Lik: -3985.976, Max-Change: 0.00053
Iteration: 371, Log-Lik: -3985.976, Max-Change: 0.00167
Iteration: 372, Log-Lik: -3985.976, Max-Change: 0.00042
Iteration: 373, Log-Lik: -3985.976, Max-Change: 0.00034
Iteration: 374, Log-Lik: -3985.976, Max-Change: 0.00166
Iteration: 375, Log-Lik: -3985.976, Max-Change: 0.00033
Iteration: 376, Log-Lik: -3985.976, Max-Change: 0.00166
Iteration: 377, Log-Lik: -3985.976, Max-Change: 0.00049
Iteration: 378, Log-Lik: -3985.976, Max-Change: 0.00166
Iteration: 379, Log-Lik: -3985.975, Max-Change: 0.00063
Iteration: 380, Log-Lik: -3985.975, Max-Change: 0.00165
Iteration: 381, Log-Lik: -3985.975, Max-Change: 0.00050
Iteration: 382, Log-Lik: -3985.975, Max-Change: 0.00041
Iteration: 383, Log-Lik: -3985.975, Max-Change: 0.00165
Iteration: 384, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 385, Log-Lik: -3985.975, Max-Change: 0.00165
Iteration: 386, Log-Lik: -3985.975, Max-Change: 0.00058
Iteration: 387, Log-Lik: -3985.975, Max-Change: 0.00164
Iteration: 388, Log-Lik: -3985.975, Max-Change: 0.00079
Iteration: 389, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 390, Log-Lik: -3985.975, Max-Change: 0.00164
Iteration: 391, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 392, Log-Lik: -3985.975, Max-Change: 0.00164
Iteration: 393, Log-Lik: -3985.975, Max-Change: 0.00163
Iteration: 394, Log-Lik: -3985.975, Max-Change: 0.00053
Iteration: 395, Log-Lik: -3985.975, Max-Change: 0.00163
Iteration: 396, Log-Lik: -3985.975, Max-Change: 0.00042
Iteration: 397, Log-Lik: -3985.975, Max-Change: 0.00034
Iteration: 398, Log-Lik: -3985.975, Max-Change: 0.00163
Iteration: 399, Log-Lik: -3985.975, Max-Change: 0.00162
Iteration: 400, Log-Lik: -3985.975, Max-Change: 0.00053
Iteration: 401, Log-Lik: -3985.975, Max-Change: 0.00162
Iteration: 402, Log-Lik: -3985.975, Max-Change: 0.00042
Iteration: 403, Log-Lik: -3985.975, Max-Change: 0.00034
Iteration: 404, Log-Lik: -3985.975, Max-Change: 0.00162
Iteration: 405, Log-Lik: -3985.975, Max-Change: 0.00032
Iteration: 406, Log-Lik: -3985.975, Max-Change: 0.00161
Iteration: 407, Log-Lik: -3985.975, Max-Change: 0.00049
Iteration: 408, Log-Lik: -3985.975, Max-Change: 0.00161
Iteration: 409, Log-Lik: -3985.975, Max-Change: 0.00063
Iteration: 410, Log-Lik: -3985.975, Max-Change: 0.00161
Iteration: 411, Log-Lik: -3985.975, Max-Change: 0.00050
Iteration: 412, Log-Lik: -3985.975, Max-Change: 0.00041
Iteration: 413, Log-Lik: -3985.975, Max-Change: 0.00160
Iteration: 414, Log-Lik: -3985.975, Max-Change: 0.00032
Iteration: 415, Log-Lik: -3985.975, Max-Change: 0.00160
Iteration: 416, Log-Lik: -3985.975, Max-Change: 0.00058
Iteration: 417, Log-Lik: -3985.975, Max-Change: 0.00160
Iteration: 418, Log-Lik: -3985.975, Max-Change: 0.00079
Iteration: 419, Log-Lik: -3985.975, Max-Change: 0.00032
Iteration: 420, Log-Lik: -3985.975, Max-Change: 0.00159
Iteration: 421, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 422, Log-Lik: -3985.975, Max-Change: 0.00159
Iteration: 423, Log-Lik: -3985.975, Max-Change: 0.00159
Iteration: 424, Log-Lik: -3985.975, Max-Change: 0.00052
Iteration: 425, Log-Lik: -3985.975, Max-Change: 0.00158
Iteration: 426, Log-Lik: -3985.975, Max-Change: 0.00041
Iteration: 427, Log-Lik: -3985.975, Max-Change: 0.00034
Iteration: 428, Log-Lik: -3985.975, Max-Change: 0.00158
Iteration: 429, Log-Lik: -3985.975, Max-Change: 0.00158
Iteration: 430, Log-Lik: -3985.975, Max-Change: 0.00052
Iteration: 431, Log-Lik: -3985.975, Max-Change: 0.00158
Iteration: 432, Log-Lik: -3985.975, Max-Change: 0.00041
Iteration: 433, Log-Lik: -3985.975, Max-Change: 0.00034
Iteration: 434, Log-Lik: -3985.975, Max-Change: 0.00157
Iteration: 435, Log-Lik: -3985.975, Max-Change: 0.00157
Iteration: 436, Log-Lik: -3985.975, Max-Change: 0.00052
Iteration: 437, Log-Lik: -3985.975, Max-Change: 0.00157
Iteration: 438, Log-Lik: -3985.975, Max-Change: 0.00041
Iteration: 439, Log-Lik: -3985.975, Max-Change: 0.00034
Iteration: 440, Log-Lik: -3985.975, Max-Change: 0.00156
Iteration: 441, Log-Lik: -3985.975, Max-Change: 0.00031
Iteration: 442, Log-Lik: -3985.975, Max-Change: 0.00156
Iteration: 443, Log-Lik: -3985.975, Max-Change: 0.00048
Iteration: 444, Log-Lik: -3985.975, Max-Change: 0.00156
Iteration: 445, Log-Lik: -3985.975, Max-Change: 0.00062
Iteration: 446, Log-Lik: -3985.975, Max-Change: 0.00155
Iteration: 447, Log-Lik: -3985.975, Max-Change: 0.00049
Iteration: 448, Log-Lik: -3985.975, Max-Change: 0.00040
Iteration: 449, Log-Lik: -3985.975, Max-Change: 0.00155
Iteration: 450, Log-Lik: -3985.975, Max-Change: 0.00032
Iteration: 451, Log-Lik: -3985.975, Max-Change: 0.00155
Iteration: 452, Log-Lik: -3985.975, Max-Change: 0.00057
Iteration: 453, Log-Lik: -3985.975, Max-Change: 0.00155
Iteration: 454, Log-Lik: -3985.975, Max-Change: 0.00077
Iteration: 455, Log-Lik: -3985.975, Max-Change: 0.00031
Iteration: 456, Log-Lik: -3985.975, Max-Change: 0.00154
Iteration: 457, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 458, Log-Lik: -3985.975, Max-Change: 0.00154
Iteration: 459, Log-Lik: -3985.975, Max-Change: 0.00154
Iteration: 460, Log-Lik: -3985.975, Max-Change: 0.00051
Iteration: 461, Log-Lik: -3985.975, Max-Change: 0.00153
Iteration: 462, Log-Lik: -3985.975, Max-Change: 0.00040
Iteration: 463, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 464, Log-Lik: -3985.975, Max-Change: 0.00153
Iteration: 465, Log-Lik: -3985.975, Max-Change: 0.00153
Iteration: 466, Log-Lik: -3985.975, Max-Change: 0.00051
Iteration: 467, Log-Lik: -3985.975, Max-Change: 0.00152
Iteration: 468, Log-Lik: -3985.975, Max-Change: 0.00040
Iteration: 469, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 470, Log-Lik: -3985.975, Max-Change: 0.00152
Iteration: 471, Log-Lik: -3985.975, Max-Change: 0.00152
Iteration: 472, Log-Lik: -3985.975, Max-Change: 0.00051
Iteration: 473, Log-Lik: -3985.975, Max-Change: 0.00152
Iteration: 474, Log-Lik: -3985.975, Max-Change: 0.00040
Iteration: 475, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 476, Log-Lik: -3985.975, Max-Change: 0.00151
Iteration: 477, Log-Lik: -3985.975, Max-Change: 0.00151
Iteration: 478, Log-Lik: -3985.975, Max-Change: 0.00050
Iteration: 479, Log-Lik: -3985.975, Max-Change: 0.00151
Iteration: 480, Log-Lik: -3985.975, Max-Change: 0.00040
Iteration: 481, Log-Lik: -3985.975, Max-Change: 0.00033
Iteration: 482, Log-Lik: -3985.975, Max-Change: 0.00151
Iteration: 483, Log-Lik: -3985.975, Max-Change: 0.00030
Iteration: 484, Log-Lik: -3985.975, Max-Change: 0.00150
Iteration: 485, Log-Lik: -3985.975, Max-Change: 0.00046
Iteration: 486, Log-Lik: -3985.975, Max-Change: 0.00150
Iteration: 487, Log-Lik: -3985.975, Max-Change: 0.00060
Iteration: 488, Log-Lik: -3985.975, Max-Change: 0.00150
Iteration: 489, Log-Lik: -3985.975, Max-Change: 0.00048
Iteration: 490, Log-Lik: -3985.975, Max-Change: 0.00039
Iteration: 491, Log-Lik: -3985.975, Max-Change: 0.00149
Iteration: 492, Log-Lik: -3985.975, Max-Change: 0.00031
Iteration: 493, Log-Lik: -3985.975, Max-Change: 0.00149
Iteration: 494, Log-Lik: -3985.975, Max-Change: 0.00055
Iteration: 495, Log-Lik: -3985.975, Max-Change: 0.00149
Iteration: 496, Log-Lik: -3985.975, Max-Change: 0.00075
Iteration: 497, Log-Lik: -3985.975, Max-Change: 0.00030
Iteration: 498, Log-Lik: -3985.975, Max-Change: 0.00149
Iteration: 499, Log-Lik: -3985.975, Max-Change: 0.00032
Iteration: 500, Log-Lik: -3985.975, Max-Change: 0.00148
## [1] "2PL ITERATION 15. STARTED WITH 33 ITEMS. 13 OUTLIERS REMOVED. 20 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -3212.223, Max-Change: 3.18081
Iteration: 2, Log-Lik: -2531.816, Max-Change: 0.12606
Iteration: 3, Log-Lik: -2530.866, Max-Change: 0.10354
Iteration: 4, Log-Lik: -2527.900, Max-Change: 0.11667
Iteration: 5, Log-Lik: -2526.294, Max-Change: 0.12124
Iteration: 6, Log-Lik: -2524.577, Max-Change: 0.12794
Iteration: 7, Log-Lik: -2517.252, Max-Change: 0.08871
Iteration: 8, Log-Lik: -2516.631, Max-Change: 0.05610
Iteration: 9, Log-Lik: -2516.319, Max-Change: 0.04989
Iteration: 10, Log-Lik: -2515.764, Max-Change: 0.02830
Iteration: 11, Log-Lik: -2515.724, Max-Change: 0.02513
Iteration: 12, Log-Lik: -2515.697, Max-Change: 0.01854
Iteration: 13, Log-Lik: -2515.654, Max-Change: 0.01361
Iteration: 14, Log-Lik: -2515.649, Max-Change: 0.01152
Iteration: 15, Log-Lik: -2515.646, Max-Change: 0.00834
Iteration: 16, Log-Lik: -2515.640, Max-Change: 0.00660
Iteration: 17, Log-Lik: -2515.639, Max-Change: 0.00554
Iteration: 18, Log-Lik: -2515.638, Max-Change: 0.00463
Iteration: 19, Log-Lik: -2515.636, Max-Change: 0.00219
Iteration: 20, Log-Lik: -2515.636, Max-Change: 0.00183
Iteration: 21, Log-Lik: -2515.636, Max-Change: 0.00086
Iteration: 22, Log-Lik: -2515.636, Max-Change: 0.00079
Iteration: 23, Log-Lik: -2515.636, Max-Change: 0.00073
Iteration: 24, Log-Lik: -2515.636, Max-Change: 0.00067
Iteration: 25, Log-Lik: -2515.636, Max-Change: 0.00036
Iteration: 26, Log-Lik: -2515.636, Max-Change: 0.00033
Iteration: 27, Log-Lik: -2515.636, Max-Change: 0.00031
Iteration: 28, Log-Lik: -2515.636, Max-Change: 0.00019
Iteration: 29, Log-Lik: -2515.636, Max-Change: 0.00018
Iteration: 30, Log-Lik: -2515.636, Max-Change: 0.00017
Iteration: 31, Log-Lik: -2515.636, Max-Change: 0.00011
Iteration: 32, Log-Lik: -2515.636, Max-Change: 0.00011
Iteration: 33, Log-Lik: -2515.636, Max-Change: 0.00010
Iteration: 34, Log-Lik: -2515.636, Max-Change: 0.00007
## [1] "2PL ITERATION 16. STARTED WITH 20 ITEMS. 6 OUTLIERS REMOVED. 14 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -2059.145, Max-Change: 3.16180
Iteration: 2, Log-Lik: -1539.881, Max-Change: 0.12486
Iteration: 3, Log-Lik: -1539.469, Max-Change: 0.07027
Iteration: 4, Log-Lik: -1538.657, Max-Change: 0.08132
Iteration: 5, Log-Lik: -1538.021, Max-Change: 0.08907
Iteration: 6, Log-Lik: -1537.268, Max-Change: 0.09693
Iteration: 7, Log-Lik: -1532.571, Max-Change: 0.13901
Iteration: 8, Log-Lik: -1531.761, Max-Change: 0.07736
Iteration: 9, Log-Lik: -1531.221, Max-Change: 0.07132
Iteration: 10, Log-Lik: -1529.641, Max-Change: 0.03567
Iteration: 11, Log-Lik: -1529.584, Max-Change: 0.02756
Iteration: 12, Log-Lik: -1529.555, Max-Change: 0.02395
Iteration: 13, Log-Lik: -1529.509, Max-Change: 0.01477
Iteration: 14, Log-Lik: -1529.503, Max-Change: 0.01287
Iteration: 15, Log-Lik: -1529.499, Max-Change: 0.01020
Iteration: 16, Log-Lik: -1529.491, Max-Change: 0.00448
Iteration: 17, Log-Lik: -1529.490, Max-Change: 0.00393
Iteration: 18, Log-Lik: -1529.490, Max-Change: 0.00375
Iteration: 19, Log-Lik: -1529.489, Max-Change: 0.00086
Iteration: 20, Log-Lik: -1529.489, Max-Change: 0.00062
Iteration: 21, Log-Lik: -1529.489, Max-Change: 0.00055
Iteration: 22, Log-Lik: -1529.489, Max-Change: 0.00042
Iteration: 23, Log-Lik: -1529.489, Max-Change: 0.00039
Iteration: 24, Log-Lik: -1529.489, Max-Change: 0.00035
Iteration: 25, Log-Lik: -1529.489, Max-Change: 0.00017
Iteration: 26, Log-Lik: -1529.489, Max-Change: 0.00016
Iteration: 27, Log-Lik: -1529.489, Max-Change: 0.00014
Iteration: 28, Log-Lik: -1529.489, Max-Change: 0.00007
## [1] "2PL ITERATION 17. STARTED WITH 14 ITEMS. 6 OUTLIERS REMOVED. 8 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -1354.096, Max-Change: 3.16052
Iteration: 2, Log-Lik: -1075.055, Max-Change: 0.02446
Iteration: 3, Log-Lik: -1074.998, Max-Change: 0.02433
Iteration: 4, Log-Lik: -1074.776, Max-Change: 0.02659
Iteration: 5, Log-Lik: -1074.700, Max-Change: 0.02759
Iteration: 6, Log-Lik: -1074.619, Max-Change: 0.02859
Iteration: 7, Log-Lik: -1074.076, Max-Change: 0.03229
Iteration: 8, Log-Lik: -1073.965, Max-Change: 0.03264
Iteration: 9, Log-Lik: -1073.854, Max-Change: 0.03286
Iteration: 10, Log-Lik: -1073.222, Max-Change: 0.03148
Iteration: 11, Log-Lik: -1073.129, Max-Change: 0.03004
Iteration: 12, Log-Lik: -1073.044, Max-Change: 0.02926
Iteration: 13, Log-Lik: -1072.648, Max-Change: 0.02357
Iteration: 14, Log-Lik: -1072.610, Max-Change: 0.02276
Iteration: 15, Log-Lik: -1072.579, Max-Change: 0.02187
Iteration: 16, Log-Lik: -1072.451, Max-Change: 0.01298
Iteration: 17, Log-Lik: -1072.443, Max-Change: 0.01203
Iteration: 18, Log-Lik: -1072.437, Max-Change: 0.01106
Iteration: 19, Log-Lik: -1072.415, Max-Change: 0.00425
Iteration: 20, Log-Lik: -1072.414, Max-Change: 0.00464
Iteration: 21, Log-Lik: -1072.413, Max-Change: 0.00421
Iteration: 22, Log-Lik: -1072.410, Max-Change: 0.00178
Iteration: 23, Log-Lik: -1072.410, Max-Change: 0.00149
Iteration: 24, Log-Lik: -1072.410, Max-Change: 0.00146
Iteration: 25, Log-Lik: -1072.410, Max-Change: 0.00057
Iteration: 26, Log-Lik: -1072.410, Max-Change: 0.00041
Iteration: 27, Log-Lik: -1072.410, Max-Change: 0.00040
Iteration: 28, Log-Lik: -1072.410, Max-Change: 0.00021
Iteration: 29, Log-Lik: -1072.410, Max-Change: 0.00023
Iteration: 30, Log-Lik: -1072.410, Max-Change: 0.00021
Iteration: 31, Log-Lik: -1072.410, Max-Change: 0.00013
Iteration: 32, Log-Lik: -1072.410, Max-Change: 0.00012
Iteration: 33, Log-Lik: -1072.410, Max-Change: 0.00011
Iteration: 34, Log-Lik: -1072.410, Max-Change: 0.00007
## [1] "2PL ITERATION 18. STARTED WITH 8 ITEMS. 4 OUTLIERS REMOVED. 4 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -1023.604, Max-Change: 2.78577
Iteration: 2, Log-Lik: -800.998, Max-Change: 0.02096
Iteration: 3, Log-Lik: -800.976, Max-Change: 0.02013
Iteration: 4, Log-Lik: -800.898, Max-Change: 0.01736
Iteration: 5, Log-Lik: -800.874, Max-Change: 0.01697
Iteration: 6, Log-Lik: -800.848, Max-Change: 0.01758
Iteration: 7, Log-Lik: -800.685, Max-Change: 0.02044
Iteration: 8, Log-Lik: -800.654, Max-Change: 0.02086
Iteration: 9, Log-Lik: -800.623, Max-Change: 0.02111
Iteration: 10, Log-Lik: -800.436, Max-Change: 0.02134
Iteration: 11, Log-Lik: -800.406, Max-Change: 0.02137
Iteration: 12, Log-Lik: -800.377, Max-Change: 0.02110
Iteration: 13, Log-Lik: -800.221, Max-Change: 0.01738
Iteration: 14, Log-Lik: -800.201, Max-Change: 0.01841
Iteration: 15, Log-Lik: -800.183, Max-Change: 0.01768
Iteration: 16, Log-Lik: -800.092, Max-Change: 0.01241
Iteration: 17, Log-Lik: -800.083, Max-Change: 0.01182
Iteration: 18, Log-Lik: -800.075, Max-Change: 0.01113
Iteration: 19, Log-Lik: -800.039, Max-Change: 0.00747
Iteration: 20, Log-Lik: -800.035, Max-Change: 0.00714
Iteration: 21, Log-Lik: -800.033, Max-Change: 0.00678
Iteration: 22, Log-Lik: -800.021, Max-Change: 0.00464
Iteration: 23, Log-Lik: -800.020, Max-Change: 0.00442
Iteration: 24, Log-Lik: -800.019, Max-Change: 0.00419
Iteration: 25, Log-Lik: -800.015, Max-Change: 0.00280
Iteration: 26, Log-Lik: -800.015, Max-Change: 0.00263
Iteration: 27, Log-Lik: -800.015, Max-Change: 0.00248
Iteration: 28, Log-Lik: -800.013, Max-Change: 0.00187
Iteration: 29, Log-Lik: -800.013, Max-Change: 0.00173
Iteration: 30, Log-Lik: -800.013, Max-Change: 0.00161
Iteration: 31, Log-Lik: -800.013, Max-Change: 0.00081
Iteration: 32, Log-Lik: -800.013, Max-Change: 0.00074
Iteration: 33, Log-Lik: -800.013, Max-Change: 0.00070
Iteration: 34, Log-Lik: -800.013, Max-Change: 0.00044
Iteration: 35, Log-Lik: -800.013, Max-Change: 0.00041
Iteration: 36, Log-Lik: -800.013, Max-Change: 0.00038
Iteration: 37, Log-Lik: -800.013, Max-Change: 0.00025
Iteration: 38, Log-Lik: -800.013, Max-Change: 0.00023
Iteration: 39, Log-Lik: -800.013, Max-Change: 0.00022
Iteration: 40, Log-Lik: -800.013, Max-Change: 0.00014
Iteration: 41, Log-Lik: -800.013, Max-Change: 0.00013
Iteration: 42, Log-Lik: -800.013, Max-Change: 0.00013
Iteration: 43, Log-Lik: -800.013, Max-Change: 0.00008
## [1] "2PL ITERATION 19. STARTED WITH 4 ITEMS. 1 OUTLIERS REMOVED. 3 ITEMS RETAINED."
##
Iteration: 1, Log-Lik: -769.923, Max-Change: 3.15895
Iteration: 2, Log-Lik: -548.977, Max-Change: 0.01135
Iteration: 3, Log-Lik: -548.976, Max-Change: 0.00942
Iteration: 4, Log-Lik: -548.975, Max-Change: 0.00627
Iteration: 5, Log-Lik: -548.974, Max-Change: 0.00512
Iteration: 6, Log-Lik: -548.974, Max-Change: 0.00423
Iteration: 7, Log-Lik: -548.973, Max-Change: 0.00075
Iteration: 8, Log-Lik: -548.973, Max-Change: 0.00070
Iteration: 9, Log-Lik: -548.973, Max-Change: 0.00067
Iteration: 10, Log-Lik: -548.973, Max-Change: 0.00057
Iteration: 11, Log-Lik: -548.973, Max-Change: 0.00109
Iteration: 12, Log-Lik: -548.973, Max-Change: 0.00058
Iteration: 13, Log-Lik: -548.973, Max-Change: 0.00103
Iteration: 14, Log-Lik: -548.973, Max-Change: 0.00098
Iteration: 15, Log-Lik: -548.973, Max-Change: 0.00095
Iteration: 16, Log-Lik: -548.972, Max-Change: 0.00073
Iteration: 17, Log-Lik: -548.972, Max-Change: 0.00071
Iteration: 18, Log-Lik: -548.972, Max-Change: 0.00068
Iteration: 19, Log-Lik: -548.972, Max-Change: 0.00058
Iteration: 20, Log-Lik: -548.972, Max-Change: 0.00055
Iteration: 21, Log-Lik: -548.972, Max-Change: 0.00054
Iteration: 22, Log-Lik: -548.972, Max-Change: 0.00047
Iteration: 23, Log-Lik: -548.972, Max-Change: 0.00046
Iteration: 24, Log-Lik: -548.972, Max-Change: 0.00044
Iteration: 25, Log-Lik: -548.972, Max-Change: 0.00039
Iteration: 26, Log-Lik: -548.972, Max-Change: 0.00037
Iteration: 27, Log-Lik: -548.972, Max-Change: 0.00036
Iteration: 28, Log-Lik: -548.972, Max-Change: 0.00031
Iteration: 29, Log-Lik: -548.972, Max-Change: 0.00030
Iteration: 30, Log-Lik: -548.972, Max-Change: 0.00029
Iteration: 31, Log-Lik: -548.972, Max-Change: 0.00026
Iteration: 32, Log-Lik: -548.972, Max-Change: 0.00025
Iteration: 33, Log-Lik: -548.972, Max-Change: 0.00024
Iteration: 34, Log-Lik: -548.972, Max-Change: 0.00021
Iteration: 35, Log-Lik: -548.972, Max-Change: 0.00020
Iteration: 36, Log-Lik: -548.972, Max-Change: 0.00020
Iteration: 37, Log-Lik: -548.972, Max-Change: 0.00017
Iteration: 38, Log-Lik: -548.972, Max-Change: 0.00017
Iteration: 39, Log-Lik: -548.972, Max-Change: 0.00016
Iteration: 40, Log-Lik: -548.972, Max-Change: 0.00014
Iteration: 41, Log-Lik: -548.972, Max-Change: 0.00014
Iteration: 42, Log-Lik: -548.972, Max-Change: 0.00013
Iteration: 43, Log-Lik: -548.972, Max-Change: 0.00012
Iteration: 44, Log-Lik: -548.972, Max-Change: 0.00011
Iteration: 45, Log-Lik: -548.972, Max-Change: 0.00011
Iteration: 46, Log-Lik: -548.972, Max-Change: 0.00010
## [1] "2PL ITERATION 20. STARTED WITH 3 ITEMS. 4 OUTLIERS REMOVED. -1 ITEMS RETAINED."
coefficients <- co %>%
rename(slope = a, difficulty = b) %>%
arrange(difficulty)
coefficients %>%
kable()
| words | slope | difficulty | g | u |
|---|---|---|---|---|
| aloe_cactus | 0.0000000 | -Inf | 0.5 | 1 |
| acorn_key | 0.0721736 | -43.755986 | 0.5 | 1 |
| acorn_coconut | 0.1243297 | -22.422637 | 0.5 | 1 |
| aloe_bracket | 0.1709534 | 1.194684 | 0.5 | 1 |
kept_items <- coefficients$words
d_wide_kid_model_subset <- pilot_data_filtered %>%
ungroup() %>%
filter(kid_or_adult == 'Child') %>%
filter(item_pair %in% kept_items) %>%
select(sub_id, item_pair, correct) %>%
arrange(item_pair) %>%
ungroup() %>%
pivot_wider(names_from=item_pair, values_from=correct, values_fn = ~mean(.x)) %>%
ungroup()
d_mat_kid_model_subset <- d_wide_kid_model_subset %>%
select(-sub_id) %>%
data.frame %>%
data.matrix
rownames(d_mat_kid_model_subset) <- d_wide_kid_model_subset$sub_id
assertthat::assert_that(dim(d_mat_kid_model_subset)[2]==length(kept_items))
## [1] TRUE
d_wide_adult_model_subset<- pilot_data_filtered %>%
ungroup() %>%
filter(kid_or_adult == 'Adult') %>%
filter(item_pair %in% kept_items) %>%
select(sub_id, item_pair, correct) %>%
arrange(item_pair) %>%
ungroup() %>%
pivot_wider(names_from=item_pair, values_from=correct, values_fn = ~mean(.x)) %>%
ungroup()
d_mat_adult_model_subset <- d_wide_adult_model_subset %>%
select(-sub_id) %>%
data.frame %>%
data.matrix
rownames(d_mat_adult_model_subset) <- d_wide_adult_model_subset$sub_id
assertthat::assert_that(dim(d_mat_adult_model_subset)[2]==length(kept_items))
## [1] TRUE
start.dim = length(colnames(d_mat_adult_model_subset))-1
mm = (
'F = 1-%d,
PRIOR = (1-%d, a1, norm, .2, 1),
PRIOR = (1-%d, d, norm, 0, 2)'
)
mm = mirt.model(sprintf(mm,start.dim,start.dim,start.dim))
mod_2pl_priors_kid_model_subset <- mirt::mirt(d_mat_kid_model_subset, mm, itemtype='2PL',guess=.5, upper=1, verbose=TRUE)
##
Iteration: 1, Log-Lik: -518.529, Max-Change: 12.74522
Iteration: 2, Log-Lik: -436.208, Max-Change: 1.01626
Iteration: 3, Log-Lik: -436.185, Max-Change: 9.58284
Iteration: 4, Log-Lik: -391.924, Max-Change: 1.13680
Iteration: 5, Log-Lik: -377.318, Max-Change: 0.01866
Iteration: 6, Log-Lik: -377.315, Max-Change: 0.01603
Iteration: 7, Log-Lik: -377.308, Max-Change: 0.00452
Iteration: 8, Log-Lik: -377.308, Max-Change: 0.00475
Iteration: 9, Log-Lik: -377.308, Max-Change: 0.00379
Iteration: 10, Log-Lik: -377.307, Max-Change: 0.00180
Iteration: 11, Log-Lik: -377.307, Max-Change: 0.00290
Iteration: 12, Log-Lik: -377.307, Max-Change: 0.00130
Iteration: 13, Log-Lik: -377.307, Max-Change: 0.00114
Iteration: 14, Log-Lik: -377.307, Max-Change: 0.00098
Iteration: 15, Log-Lik: -377.307, Max-Change: 0.00042
Iteration: 16, Log-Lik: -377.307, Max-Change: 0.00203
Iteration: 17, Log-Lik: -377.307, Max-Change: 0.00032
Iteration: 18, Log-Lik: -377.307, Max-Change: 0.00152
Iteration: 19, Log-Lik: -377.307, Max-Change: 0.00113
Iteration: 20, Log-Lik: -377.307, Max-Change: 0.00021
Iteration: 21, Log-Lik: -377.307, Max-Change: 0.00085
Iteration: 22, Log-Lik: -377.307, Max-Change: 0.00013
Iteration: 23, Log-Lik: -377.307, Max-Change: 0.00061
Iteration: 24, Log-Lik: -377.307, Max-Change: 0.00048
Iteration: 25, Log-Lik: -377.307, Max-Change: 0.00022
Iteration: 26, Log-Lik: -377.307, Max-Change: 0.00003
mod_2pl_priors_adult_model_subset <- mirt::mirt(d_mat_adult_model_subset, mm, itemtype='2PL',guess=.5, upper=1, verbose=TRUE)
##
Iteration: 1, Log-Lik: -252.045, Max-Change: 3.52957
Iteration: 2, Log-Lik: -141.779, Max-Change: 0.01096
Iteration: 3, Log-Lik: -141.778, Max-Change: 0.00527
Iteration: 4, Log-Lik: -141.777, Max-Change: 0.00400
Iteration: 5, Log-Lik: -141.777, Max-Change: 0.00309
Iteration: 6, Log-Lik: -141.777, Max-Change: 0.00070
Iteration: 7, Log-Lik: -141.777, Max-Change: 0.00060
Iteration: 8, Log-Lik: -141.777, Max-Change: 0.00029
Iteration: 9, Log-Lik: -141.777, Max-Change: 0.00027
Iteration: 10, Log-Lik: -141.777, Max-Change: 0.00019
Iteration: 11, Log-Lik: -141.777, Max-Change: 0.00019
Iteration: 12, Log-Lik: -141.777, Max-Change: 0.00018
Iteration: 13, Log-Lik: -141.777, Max-Change: 0.00013
Iteration: 14, Log-Lik: -141.777, Max-Change: 0.00013
Iteration: 15, Log-Lik: -141.777, Max-Change: 0.00012
Iteration: 16, Log-Lik: -141.777, Max-Change: 0.00009
coefs_2pl_kid_model_subset <- as_data_frame(coef(mod_2pl_priors_kid_model_subset, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_2pl_priors_kid_model_subset, simplify = TRUE)$items))
coefs_2pl_adults_model_subset <- as_data_frame(coef(mod_2pl_priors_adult_model_subset, simplify = TRUE)$items) %>%
mutate(item_pair = rownames(coef(mod_2pl_priors_adult_model_subset, simplify = TRUE)$items))
coefs_2pl_model_subset <- coefs_2pl_adults_model_subset %>%
select(d, item_pair) %>%
mutate(cohort = 'adults') %>%
full_join(coefs_2pl_kid_model_subset %>% select(d, item_pair) %>% mutate(cohort = 'kid')) %>%
pivot_wider(names_from = cohort, values_from = d) %>%
mutate(differences = adults-kid)
coefs_a1_2pl <- coefs_2pl_adults_model_subset %>%
select(a1, item_pair) %>%
mutate(cohort = 'adults') %>%
full_join(coefs_2pl_kid_model_subset %>% select(a1, item_pair) %>% mutate(cohort = 'kid')) %>%
pivot_wider(names_from = cohort, values_from = a1) %>%
mutate(differences = adults-kid)
h1 <- ggplot(co, aes(x=a)) +
geom_histogram(color="black", fill="white")
h2 <- ggplot(co, aes(x=b)) +
geom_histogram(color="black", fill="white")
# grid.arrange(h1, h2, nrow = 1)
# g <- arrangeGrob(h1,h2, nrow=1)
# ggsave('2PL-ModelParamsHist.png',g)
Doesn’t really improve the correlation thaaaat much .63 -> .69…
ggplot(data = coefs_2pl_model_subset, aes(x=adults, y=kid)) +
geom_point(alpha=.8) +
geom_smooth(method='lm', color='grey') +
theme_few() +
ggtitle('Adult vs. Kid - 2pl IRT model coefficients - difficulty - subset from iterative fit') +
ggrepel::geom_label_repel(aes(label = item_pair), max.overlaps=20)
### Compute correlation for difficulty
cor.test(coefs_2pl_adults$d, coefs_2pl_kid$d)
##
## Pearson's product-moment correlation
##
## data: coefs_2pl_adults$d and coefs_2pl_kid$d
## t = 12.337, df = 234, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5436467 0.6993978
## sample estimates:
## cor
## 0.6277652
thetas <- fscores(m) %>%
as_tibble()
sub_data <- pilot_data_filtered %>%
distinct(sub_id, item_pair, correct,age) %>%
group_by(sub_id) %>%
summarize(mean_pc = mean(correct), num_trials = length(correct)) %>%
add_column(thetas = thetas$F)
sub_data_with_demographics <- pilot_data_filtered %>%
distinct(age, sub_id) %>%
right_join(sub_data) %>%
mutate(age = replace_na(age, '9')) %>%
mutate(age = str_replace(age, '\\+', '')) %>%
mutate(age = str_replace(age, 'Adult', '20')) %>%
mutate(age = as.numeric(age))
hist(sub_data_with_demographics$thetas)
How is it possible that some kids are having high pcs and low thetas? Combination of relatively few subjects per age bin x variable items across kids and adults?
ggplot(data = sub_data_with_demographics, aes(x=thetas, y=mean_pc, size=num_trials)) +
geom_point(alpha=.15) +
theme_few() +
xlab('Theta estimates') +
ylab('Avg PC') +
geom_smooth(aes(weight = num_trials)) +
facet_wrap(~age)
theta_by_age <- sub_data_with_demographics %>%
group_by(age) %>%
filter(!is.na(thetas)) %>% # some participants who only responded to eliminated items
multi_boot_standard(col = 'thetas')
theta_by_age_subs <- sub_data_with_demographics %>%
group_by(age) %>%
summarize(num_participants = length(unique(sub_id)))
Won’t run and get bizarre error – Error: Parameter ‘d’ does not exist for respective item