Import data

## # A tibble: 1,222 × 10
##     year months    state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
##    <dbl> <chr>     <chr>   <dbl> <chr>     <dbl>   <dbl> <chr>   <chr>   <chr>  
##  1  2015 January-… Alab…    7000 7000       1800      26 2800    250     4      
##  2  2015 January-… Ariz…   35000 35000      4600      13 3400    2100    6      
##  3  2015 January-… Arka…   13000 14000      1500      11 1200    90      1      
##  4  2015 January-… Cali… 1440000 1690000  255000      15 250000  124000  7      
##  5  2015 January-… Colo…    3500 12500      1500      12 200     140     1      
##  6  2015 January-… Conn…    3900 3900        870      22 290     NA      NA     
##  7  2015 January-… Flor…  305000 315000    42000      13 54000   25000   8      
##  8  2015 January-… Geor…  104000 105000    14500      14 47000   9500    9      
##  9  2015 January-… Hawa…   10500 10500       380       4 3400    760     7      
## 10  2015 January-… Idaho   81000 88000      3700       4 2600    8000    9      
## # … with 1,212 more rows, and abbreviated variable names ¹​colony_n,
## #   ²​colony_max, ³​colony_lost, ⁴​colony_lost_pct, ⁵​colony_added, ⁶​colony_reno,
## #   ⁷​colony_reno_pct

Apply the following dplyr verbs to your data

Filter rows

## # A tibble: 47 × 10
##     year months    state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
##    <dbl> <chr>     <chr>   <dbl> <chr>     <dbl>   <dbl> <chr>   <chr>   <chr>  
##  1  2015 January-… Alab…    7000 7000       1800      26 2800    250     4      
##  2  2015 January-… Ariz…   35000 35000      4600      13 3400    2100    6      
##  3  2015 January-… Arka…   13000 14000      1500      11 1200    90      1      
##  4  2015 January-… Cali… 1440000 1690000  255000      15 250000  124000  7      
##  5  2015 January-… Colo…    3500 12500      1500      12 200     140     1      
##  6  2015 January-… Conn…    3900 3900        870      22 290     NA      NA     
##  7  2015 January-… Flor…  305000 315000    42000      13 54000   25000   8      
##  8  2015 January-… Geor…  104000 105000    14500      14 47000   9500    9      
##  9  2015 January-… Hawa…   10500 10500       380       4 3400    760     7      
## 10  2015 January-… Idaho   81000 88000      3700       4 2600    8000    9      
## # … with 37 more rows, and abbreviated variable names ¹​colony_n, ²​colony_max,
## #   ³​colony_lost, ⁴​colony_lost_pct, ⁵​colony_added, ⁶​colony_reno,
## #   ⁷​colony_reno_pct

Arrange rows

## # A tibble: 1,222 × 10
##     year months    state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
##    <dbl> <chr>     <chr>   <dbl> <chr>     <dbl>   <dbl> <chr>   <chr>   <chr>  
##  1  2021 January-… Unit… 2923240 NA       372630      13 308530  156270  5      
##  2  2021 April-Ju… Unit… 2855070 NA       255860       9 677690  480380  17     
##  3  2021 January-… Cali… 1240000 1550000  193000      12 76000   84000   5      
##  4  2021 April-Ju… Cali… 1050000 1060000   64000       6 200000  180000  17     
##  5  2021 April-Ju… Texas  385000 425000    34000       8 65000   72000   17     
##  6  2021 April-Ju… Flor…  300000 300000    33000      11 52000   31000   10     
##  7  2021 January-… Flor…  300000 305000    31000      10 42000   17000   6      
##  8  2021 January-… Texas  240000 345000    23000       7 56000   13000   4      
##  9  2021 January-… Geor…  120000 120000    20000      17 34000   14500   12     
## 10  2021 April-Ju… Geor…  135000 136000    20000      15 25000   18500   14     
## # … with 1,212 more rows, and abbreviated variable names ¹​colony_n,
## #   ²​colony_max, ³​colony_lost, ⁴​colony_lost_pct, ⁵​colony_added, ⁶​colony_reno,
## #   ⁷​colony_reno_pct

Select columns

## # A tibble: 1,222 × 4
##     year months        state       colony_lost_pct
##    <dbl> <chr>         <chr>                 <dbl>
##  1  2015 January-March Alabama                  26
##  2  2015 January-March Arizona                  13
##  3  2015 January-March Arkansas                 11
##  4  2015 January-March California               15
##  5  2015 January-March Colorado                 12
##  6  2015 January-March Connecticut              22
##  7  2015 January-March Florida                  13
##  8  2015 January-March Georgia                  14
##  9  2015 January-March Hawaii                    4
## 10  2015 January-March Idaho                     4
## # … with 1,212 more rows

Add columns

## # A tibble: 1,222 × 3
##     year months           gain
##    <dbl> <chr>           <dbl>
##  1  2015 January-March    5200
##  2  2015 January-March   30400
##  3  2015 January-March   11500
##  4  2015 January-March 1185000
##  5  2015 January-March    2000
##  6  2015 January-March    3030
##  7  2015 January-March  263000
##  8  2015 January-March   89500
##  9  2015 January-March   10120
## 10  2015 January-March   77300
## # … with 1,212 more rows

Summarize by groups

## # A tibble: 47 × 2
##    state         colony_lost
##    <chr>               <dbl>
##  1 Connecticut          258 
##  2 Vermont              346 
##  3 New Jersey           690 
##  4 Massachusetts        731.
##  5 Hawaii               833.
##  6 Maine                877.
##  7 West Virginia        907.
##  8 Missouri             916.
##  9 Maryland            1004.
## 10 Virginia            1015.
## # … with 37 more rows