Import data
## # A tibble: 1,222 × 10
## year months state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 2015 January-… Alab… 7000 7000 1800 26 2800 250 4
## 2 2015 January-… Ariz… 35000 35000 4600 13 3400 2100 6
## 3 2015 January-… Arka… 13000 14000 1500 11 1200 90 1
## 4 2015 January-… Cali… 1440000 1690000 255000 15 250000 124000 7
## 5 2015 January-… Colo… 3500 12500 1500 12 200 140 1
## 6 2015 January-… Conn… 3900 3900 870 22 290 NA NA
## 7 2015 January-… Flor… 305000 315000 42000 13 54000 25000 8
## 8 2015 January-… Geor… 104000 105000 14500 14 47000 9500 9
## 9 2015 January-… Hawa… 10500 10500 380 4 3400 760 7
## 10 2015 January-… Idaho 81000 88000 3700 4 2600 8000 9
## # … with 1,212 more rows, and abbreviated variable names ¹colony_n,
## # ²colony_max, ³colony_lost, ⁴colony_lost_pct, ⁵colony_added, ⁶colony_reno,
## # ⁷colony_reno_pct
Apply the following dplyr verbs to your data
Filter rows
## # A tibble: 47 × 10
## year months state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 2015 January-… Alab… 7000 7000 1800 26 2800 250 4
## 2 2015 January-… Ariz… 35000 35000 4600 13 3400 2100 6
## 3 2015 January-… Arka… 13000 14000 1500 11 1200 90 1
## 4 2015 January-… Cali… 1440000 1690000 255000 15 250000 124000 7
## 5 2015 January-… Colo… 3500 12500 1500 12 200 140 1
## 6 2015 January-… Conn… 3900 3900 870 22 290 NA NA
## 7 2015 January-… Flor… 305000 315000 42000 13 54000 25000 8
## 8 2015 January-… Geor… 104000 105000 14500 14 47000 9500 9
## 9 2015 January-… Hawa… 10500 10500 380 4 3400 760 7
## 10 2015 January-… Idaho 81000 88000 3700 4 2600 8000 9
## # … with 37 more rows, and abbreviated variable names ¹colony_n, ²colony_max,
## # ³colony_lost, ⁴colony_lost_pct, ⁵colony_added, ⁶colony_reno,
## # ⁷colony_reno_pct
Arrange rows
## # A tibble: 1,222 × 10
## year months state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 2021 January-… Unit… 2923240 NA 372630 13 308530 156270 5
## 2 2021 April-Ju… Unit… 2855070 NA 255860 9 677690 480380 17
## 3 2021 January-… Cali… 1240000 1550000 193000 12 76000 84000 5
## 4 2021 April-Ju… Cali… 1050000 1060000 64000 6 200000 180000 17
## 5 2021 April-Ju… Texas 385000 425000 34000 8 65000 72000 17
## 6 2021 April-Ju… Flor… 300000 300000 33000 11 52000 31000 10
## 7 2021 January-… Flor… 300000 305000 31000 10 42000 17000 6
## 8 2021 January-… Texas 240000 345000 23000 7 56000 13000 4
## 9 2021 January-… Geor… 120000 120000 20000 17 34000 14500 12
## 10 2021 April-Ju… Geor… 135000 136000 20000 15 25000 18500 14
## # … with 1,212 more rows, and abbreviated variable names ¹colony_n,
## # ²colony_max, ³colony_lost, ⁴colony_lost_pct, ⁵colony_added, ⁶colony_reno,
## # ⁷colony_reno_pct
Select columns
## # A tibble: 1,222 × 4
## year months state colony_lost_pct
## <dbl> <chr> <chr> <dbl>
## 1 2015 January-March Alabama 26
## 2 2015 January-March Arizona 13
## 3 2015 January-March Arkansas 11
## 4 2015 January-March California 15
## 5 2015 January-March Colorado 12
## 6 2015 January-March Connecticut 22
## 7 2015 January-March Florida 13
## 8 2015 January-March Georgia 14
## 9 2015 January-March Hawaii 4
## 10 2015 January-March Idaho 4
## # … with 1,212 more rows
Add columns
## # A tibble: 1,222 × 3
## year months gain
## <dbl> <chr> <dbl>
## 1 2015 January-March 5200
## 2 2015 January-March 30400
## 3 2015 January-March 11500
## 4 2015 January-March 1185000
## 5 2015 January-March 2000
## 6 2015 January-March 3030
## 7 2015 January-March 263000
## 8 2015 January-March 89500
## 9 2015 January-March 10120
## 10 2015 January-March 77300
## # … with 1,212 more rows
Summarize by groups
## # A tibble: 47 × 2
## state colony_lost
## <chr> <dbl>
## 1 Connecticut 258
## 2 Vermont 346
## 3 New Jersey 690
## 4 Massachusetts 731.
## 5 Hawaii 833.
## 6 Maine 877.
## 7 West Virginia 907.
## 8 Missouri 916.
## 9 Maryland 1004.
## 10 Virginia 1015.
## # … with 37 more rows