if (!require(haven)){
install.packages("haven", dependencies = TRUE)
library(haven)
}Loading required package: haven
Haven enables R to read and write various data formats used by other statistical packages by wrapping the fantastic ReadStat C library written by Evan Miller.
https://www.rdocumentation.org/packages/haven/versions/2.5.1
if (!require(haven)){
install.packages("haven", dependencies = TRUE)
library(haven)
}Loading required package: haven
Data frame summaries, cross-tabulations, weight-enabled frequency tables and common descriptive (univariate) statistics in concise tables available in a variety of formats (plain ASCII, Markdown and HTML). A good point-of-entry for exploring data, both for experienced and new R users.
https://www.rdocumentation.org/packages/summarytools/versions/1.0.1
if (!require(summarytools)){
install.packages("summarytools", dependencies = TRUE)
require(summarytools)
}Loading required package: summarytools
Warning in fun(libname, pkgname): couldn't connect to display ":0"
system might not have X11 capabilities; in case of errors when using dfSummary(), set st_options(use.x11 = FALSE)
A general purpose toolbox for personality, psychometric theory and experimental psychology. Functions are primarily for multivariate analysis and scale construction using factor analysis, principal component analysis, cluster analysis and reliability analysis, although others provide basic descriptive statistics.
https://www.rdocumentation.org/packages/psych/versions/2.2.9
if (!require(psych)){
install.packages("psych", dependencies = TRUE)
require(psych)
}Loading required package: psych
dataset <- read_sav("https://osf.io/kd4ej/download")Extraversion <- data.frame (dataset$FFM_1, dataset$FFM_6, dataset$FFM_11, dataset$FFM_16, dataset$FFM_21, dataset$FFM_26, dataset$FFM_31, dataset$FFM_36)Extraversion.keys <- make.keys(Extraversion, list(Extraversion=c(1,-2,3,4,-5,6,-7,8)))Extraversion.scales <- scoreItems (Extraversion.keys, Extraversion)Extraversion.scores <- Extraversion.scales$scoresdataset$Extraversion <- Extraversion.scores[,]Extraversion.scales$alpha Extraversion
alpha 0.8141661