# excel file
data <- read_excel("../00_data/MyData-Charts.xlsx")
data
## # A tibble: 1,222 × 11
## year months state colon…¹ colon…² colon…³ colon…⁴ colon…⁵ colon…⁶ colon…⁷
## <dbl> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 2015 January-… Alab… 7000 7000 1800 26 2800 250 4
## 2 2015 January-… Ariz… 35000 35000 4600 13 3400 2100 6
## 3 2015 January-… Arka… 13000 14000 1500 11 1200 90 1
## 4 2015 January-… Cali… 1440000 1690000 255000 15 250000 124000 7
## 5 2015 January-… Colo… 3500 12500 1500 12 200 140 1
## 6 2015 January-… Conn… 3900 3900 870 22 290 NA NA
## 7 2015 January-… Flor… 305000 315000 42000 13 54000 25000 8
## 8 2015 January-… Geor… 104000 105000 14500 14 47000 9500 9
## 9 2015 January-… Hawa… 10500 10500 380 4 3400 760 7
## 10 2015 January-… Idaho 81000 88000 3700 4 2600 8000 9
## # … with 1,212 more rows, 1 more variable: `Growth of colonies` <dbl>, and
## # abbreviated variable names ¹colony_n, ²colony_max, ³colony_lost,
## # ⁴colony_lost_pct, ⁵colony_added, ⁶colony_reno, ⁷colony_reno_pct
where are bees the most endangered?
plot_data <- data %>% group_by(year, state) %>% summarise(avg_pct = mean(colony_lost_pct, na.rm = TRUE)) %>% filter(year == 2021) %>% arrange(-avg_pct) %>% slice(1:10)
plot_data %>% ggplot(aes(x = avg_pct, y = fct_reorder(state, avg_pct))) + geom_col()
Bees are most endangered in Colorado where the net bee gain or loss is as low as -700 bee colony. Colorado is therefore seen as a bad place for bees since this is where the highest rate of them are being killed.