Caso 2: Prueba de hípotesis para dos muestras pareadas correlacionadas

set.seed(123)
cra = rnorm(n = 80, mean = 2.8, sd = 0.2)
hist(cra, xlim = c(2.2, 3.4), ylim = c(0, 20))
abline(v= mean(cra), col='blue', lwd=3)

library(readxl)
## Warning: package 'readxl' was built under R version 4.2.2
clase2 <- read_excel("C:/Users/FCECURSOS/Downloads/Libro1DISENOclase2.xlsx")
## New names:
## • `` -> `...3`
View(clase2)
plot(clase2$cra60,
     clase2$cra80,
     pch = 16, cex=1.5,
     xlab ='CRA 60', ylab = 'CRA 80')

# Coeficiente de correlacion
cor(clase2$cra60, clase2$cra80)
## [1] 0.9351713

[1] 0.9829322

boxplot(clase2$cra60, clase2$cra80)

Ejemplos en algunas areas


\[H_0: \mu_{CRA_{60}} = \mu_{CRA_{80}}\]

# Prueba t-student para 2 muestras pareadas o relacionadas
prueba3 = t.test(x = clase2$cra60,
      y = clase2$cra80,
      alternative ="t" , # t  tow.sided
      mu = 0,
      paired = TRUE)
prueba3
## 
##  Paired t-test
## 
## data:  clase2$cra60 and clase2$cra80
## t = -46.01, df = 79, p-value < 2.2e-16
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.4211372 -0.3862102
## sample estimates:
## mean difference 
##      -0.4036737

Conclusiones

Rechaza la hipotesis nula ya que los valores de las dos variables son diferentes.