# Load Packages
library(tidyverse)
library(tidyquant)
1 Get Stock Prices and convert to returns
Ra <- c("AAPL", "GOOG", "NFLX") %>%
tq_get(get = "stock.prices",
from = "2022-01-01",) %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 42 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2022-01-31 -0.0397
## 2 AAPL 2022-02-28 -0.0541
## 3 AAPL 2022-03-31 0.0575
## 4 AAPL 2022-04-29 -0.0971
## 5 AAPL 2022-05-31 -0.0545
## 6 AAPL 2022-06-30 -0.0814
## 7 AAPL 2022-07-29 0.189
## 8 AAPL 2022-08-31 -0.0312
## 9 AAPL 2022-09-30 -0.121
## 10 AAPL 2022-10-31 0.110
## # … with 32 more rows
2 Get baseline and convert to returns
Rb <- "XLK" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 14 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.0772
## 2 2022-02-28 -0.0488
## 3 2022-03-31 0.0335
## 4 2022-04-29 -0.110
## 5 2022-05-31 -0.00686
## 6 2022-06-30 -0.0926
## 7 2022-07-29 0.135
## 8 2022-08-31 -0.0621
## 9 2022-09-30 -0.120
## 10 2022-10-31 0.0765
## 11 2022-11-30 0.0633
## 12 2022-12-30 -0.0821
## 13 2023-01-31 0.0926
## 14 2023-02-17 0.0284
3 Join the two data tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 42 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2022-01-31 -0.0397 -0.0772
## 2 AAPL 2022-02-28 -0.0541 -0.0488
## 3 AAPL 2022-03-31 0.0575 0.0335
## 4 AAPL 2022-04-29 -0.0971 -0.110
## 5 AAPL 2022-05-31 -0.0545 -0.00686
## 6 AAPL 2022-06-30 -0.0814 -0.0926
## 7 AAPL 2022-07-29 0.189 0.135
## 8 AAPL 2022-08-31 -0.0312 -0.0621
## 9 AAPL 2022-09-30 -0.121 -0.120
## 10 AAPL 2022-10-31 0.110 0.0765
## # … with 32 more rows
4 Calclulate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActiveP…¹ Alpha Annua…² Beta `Beta-` `Beta+` Corre…³ Corre…⁴ Infor…⁵
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.0351 0.005 0.0617 1.05 0.628 1.32 0.908 0 0.250
## 2 GOOG -0.137 -0.0165 -0.181 0.843 1.30 0.910 0.841 0.0002 -0.838
## 3 NFLX -0.201 0.0065 0.0808 1.78 2.02 3.29 0.735 0.0027 -0.383
## # … with 3 more variables: `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>, and abbreviated variable names ¹ActivePremium,
## # ²AnnualizedAlpha, ³Correlation, ⁴`Correlationp-value`, ⁵InformationRatio
Which Stock Has a positively skewed distribution of returns?
RaRb_Correlation <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.Correlation)
RaRb_Correlation
## # A tibble: 3 × 5
## # Groups: symbol [3]
## symbol `p-value` `Lower CI` `Upper CI` to.Rb
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.00000709 0.729 0.971 0.908
## 2 GOOG 0.000166 0.560 0.948 0.841
## 3 NFLX 0.00274 0.335 0.911 0.735