Problem 13

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR2)
library(corrplot)
attach(Weekly)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
str(Weekly)
## 'data.frame':    1089 obs. of  9 variables:
##  $ Year     : num  1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 ...
##  $ Lag1     : num  0.816 -0.27 -2.576 3.514 0.712 ...
##  $ Lag2     : num  1.572 0.816 -0.27 -2.576 3.514 ...
##  $ Lag3     : num  -3.936 1.572 0.816 -0.27 -2.576 ...
##  $ Lag4     : num  -0.229 -3.936 1.572 0.816 -0.27 ...
##  $ Lag5     : num  -3.484 -0.229 -3.936 1.572 0.816 ...
##  $ Volume   : num  0.155 0.149 0.16 0.162 0.154 ...
##  $ Today    : num  -0.27 -2.576 3.514 0.712 1.178 ...
##  $ Direction: Factor w/ 2 levels "Down","Up": 1 1 2 2 2 1 2 2 2 1 ...
corrplot(cor(Weekly[,-9]), method = "number")

There is a very high correlation between Volume and Year. Also the minimum value for each of the Lag variables is identical, as well as the minimum for the Today variable.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

Weekly.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume, data = Weekly, family = binomial)
summary(Weekly.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

The only variable that is statistically significant is Lag2.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glmprob.wk = predict(Weekly.fit, type = "response")
glmpred.wk = rep("Down", length(glmprob.wk)) 
glmpred.wk[glmprob.wk > 0.5] <- "Up"
table(glmpred.wk, Weekly$Direction)
##           
## glmpred.wk Down  Up
##       Down   54  48
##       Up    430 557
mean(glmpred.wk == Weekly$Direction)
## [1] 0.5610652

This confusion matrix shows an accuracy of only about 56%. The model is very good at predicting the positive class (Up) at about 92%, but is terrible at predicting the negative class (Down) at only 11% accuracy.

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train=(Year<2009)
Weekly.0910 <-Weekly[!train,]
Weekly.fit<-glm(Direction~Lag2, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
##               Direction.0910
## logWeekly.pred Down Up
##           Down    9  5
##           Up     34 56
mean(logWeekly.pred == Direction.0910)
## [1] 0.625

(e) Repeat (d) using LDA.

library(MASS)
Weeklylda.fit<-lda(Direction~Lag2, data=Weekly,family=binomial, subset=train)
Weeklylda.pred<-predict(Weeklylda.fit, Weekly.0910)
table(Weeklylda.pred$class, Direction.0910)
##       Direction.0910
##        Down Up
##   Down    9  5
##   Up     34 56
mean(Weeklylda.pred$class==Direction.0910)
## [1] 0.625

(f) Repeat (d) using QDA.

Weeklyqda.fit = qda(Direction ~ Lag2, data = Weekly, subset = train)
Weeklyqda.pred = predict(Weeklyqda.fit, Weekly.0910)$class
table(Weeklyqda.pred, Direction.0910)
##               Direction.0910
## Weeklyqda.pred Down Up
##           Down    0  0
##           Up     43 61
mean(Weeklyqda.pred==Direction.0910)
## [1] 0.5865385

(g) Repeat (d) using KNN with K = 1.

library(class)
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=1)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   21 30
##         Up     22 31
mean(Weekknn.pred == Direction.0910)
## [1] 0.5

(h) Repeat (d) using naive Bayes.

library(e1071)
nbayes=naiveBayes(Direction~Lag2 ,data=Weekly ,subset=train)
nbayes
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
nbayes.class=predict(nbayes ,Weekly.0910)
table(nbayes.class ,Direction.0910)
##             Direction.0910
## nbayes.class Down Up
##         Down    0  0
##         Up     43 61

(i) Which of these methods appears to provide the best results on this data?

The regression model privided the highest level of accuracy compared to all other models.

(j) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

#Log Reg with interaction
Weekly.fit2<-glm(Direction~Lag2:Lag3+Lag2+Lag3, data=Weekly,family=binomial, subset=train)
logWeekly.prob= predict(Weekly.fit2, Weekly.0910, type = "response")
logWeekly.pred = rep("Down", length(logWeekly.prob))
logWeekly.pred[logWeekly.prob > 0.5] = "Up"
Direction.0910 = Direction[!train]
table(logWeekly.pred, Direction.0910)
##               Direction.0910
## logWeekly.pred Down Up
##           Down    8  4
##           Up     35 57
mean(logWeekly.pred == Direction.0910)
## [1] 0.625
# LDA with interaction
Weeklylda.fit2<-lda(Direction~Lag2:Lag3+Lag2+Lag3, data=Weekly,family=binomial, subset=train)
Weeklylda.pred2<-predict(Weeklylda.fit2, Weekly.0910)
table(Weeklylda.pred2$class, Direction.0910)
##       Direction.0910
##        Down Up
##   Down    8  4
##   Up     35 57
mean(Weeklylda.pred2$class==Direction.0910)
## [1] 0.625
# QDA with interaction
qda2=qda(Direction~Lag2:Lag3 ,data=Weekly ,subset=train)
classqda2=predict(qda2 ,Weekly.0910)$class
table(classqda2 ,Direction.0910)
##          Direction.0910
## classqda2 Down Up
##      Down    6  8
##      Up     37 53
mean(classqda2==Direction.0910)
## [1] 0.5673077
# K=15
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=15)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   20 20
##         Up     23 41
mean(Weekknn.pred == Direction.0910)
## [1] 0.5865385
# K=50
Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=50)
table(Weekknn.pred,Direction.0910)
##             Direction.0910
## Weekknn.pred Down Up
##         Down   20 23
##         Up     23 38
mean(Weekknn.pred == Direction.0910)
## [1] 0.5576923
detach(Weekly)

Problem 14

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

library(ISLR)
attach(Auto)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

mpg01 <- rep(0, length(mpg))
mpg01[mpg > median(mpg)] <- 1
Auto = data.frame(Auto, mpg01)

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

corrplot(cor(Auto[,-9]), method="number")

pairs(Auto)

mpg01 has a high negative correlation with cylinders, displacement, horsepower, and weight. origin and year also has a moderately high correlation with mpg01.

(c) Split the data into a training set and a test set.

train <- (year %% 2 == 0)
train.auto <- Auto[train,]
test.auto <- Auto[-train,]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

autolda.fit <- lda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
autolda.pred <- predict(autolda.fit, test.auto)
table(autolda.pred$class, test.auto$mpg01)
##    
##       0   1
##   0 169   7
##   1  26 189
mean(autolda.pred$class != test.auto$mpg01)
## [1] 0.08439898

The test error in the LDA model is 0.0844, or about 8.44%.

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

autoqda.fit <- qda(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto)
autoqda.pred <- predict(autoqda.fit, test.auto)
table(autoqda.pred$class, test.auto$mpg01)
##    
##       0   1
##   0 176  20
##   1  19 176
mean(autoqda.pred$class != test.auto$mpg01)
## [1] 0.09974425

The test error rate for the QDA model is 9.97%.

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

auto.fit<-glm(mpg01~displacement+horsepower+weight+year+cylinders+origin, data=train.auto,family=binomial)
auto.probs = predict(auto.fit, test.auto, type = "response")
auto.pred = rep(0, length(auto.probs))
auto.pred[auto.probs > 0.5] = 1
table(auto.pred, test.auto$mpg01)
##          
## auto.pred   0   1
##         0 174  12
##         1  21 184
mean(auto.pred != test.auto$mpg01)
## [1] 0.08439898

The test error rate for the logistic regression model is 8.44%.

(g) Perform naive Bayes on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

nbayes=naiveBayes(mpg01~displacement+horsepower+weight+year+cylinders+origin ,data=Auto, subset = train)
nbayes.class = predict(nbayes, test.auto)
table(nbayes.class, test.auto$mpg01)
##             
## nbayes.class   0   1
##            0 171  15
##            1  24 181
mean(nbayes.class != test.auto$mpg01)
## [1] 0.09974425

The test error rate for the Naive Bayes test is 9.97%

(h) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

# K=1
train.K= cbind(displacement,horsepower,weight,cylinders,year, origin)[train,]
test.K=cbind(displacement,horsepower,weight,cylinders, year, origin)[-train,]
set.seed(1)
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=1)
mean(autok.pred != test.auto$mpg01)
## [1] 0.07161125
# K=20
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=20)
mean(autok.pred != test.auto$mpg01)
## [1] 0.1150895
# K=30
autok.pred=knn(train.K,test.K,train.auto$mpg01,k=30)
mean(autok.pred != test.auto$mpg01)
## [1] 0.1227621

The value of K=1 performs the best on this data with an error variance of 7.16%.

detach(Auto)

Problem 16

16. Using the Boston data set, fit classification models in order to predict whether a given census tract has a crime rate above or below the median. Explore logistic regression, LDA, naive Bayes, and KNN models using various subsets of the predictors. Describe your findings. Hint: You will have to create the response variable yourself, using the variables that are contained in the Boston data set.

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
attach(Boston)

Binary crime variable

crime01 <- rep(0, length(crim))
crime01[crim > median(crim)] <- 1
Boston= data.frame(Boston,crime01)

Training/testing split

train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]
corrplot(cor(Boston), method="number")

The variables indus, nox, age, dis, rad, and tax are most highly correlated with the dependent variable crime01.

# Logistic regression
set.seed(1)
Boston.fit <-glm(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Boston.probs = predict(Boston.fit, Boston.test, type = "response")
Boston.pred = rep(0, length(Boston.probs))
Boston.pred[Boston.probs > 0.5] = 1
table(Boston.pred, crime01.test)
##            crime01.test
## Boston.pred   0   1
##           0  75   8
##           1  15 155
mean(Boston.pred != crime01.test)
## [1] 0.09090909
summary(Boston.fit)
## 
## Call:
## glm(formula = crime01 ~ indus + nox + age + dis + rad + tax, 
##     family = binomial, data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.97810  -0.21406  -0.03454   0.47107   3.04502  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.214032   7.617440  -5.542 2.99e-08 ***
## indus        -0.213126   0.073236  -2.910  0.00361 ** 
## nox          80.868029  16.066473   5.033 4.82e-07 ***
## age           0.003397   0.012032   0.282  0.77772    
## dis           0.307145   0.190502   1.612  0.10690    
## rad           0.847236   0.183767   4.610 4.02e-06 ***
## tax          -0.013760   0.004956  -2.777  0.00549 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.37  on 252  degrees of freedom
## Residual deviance: 144.44  on 246  degrees of freedom
## AIC: 158.44
## 
## Number of Fisher Scoring iterations: 8
# LDA
Boston.ldafit <-lda(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Bostonlda.pred = predict(Boston.ldafit, Boston.test)
table(Bostonlda.pred$class, crime01.test)
##    crime01.test
##       0   1
##   0  81  18
##   1   9 145
mean(Bostonlda.pred$class != crime01.test)
## [1] 0.1067194
# Naive Bayes
nbayes=naiveBayes(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train, subset = train)
nbayes.class = predict(nbayes, Boston.test)
table(nbayes.class, Boston.test$crime01)
##             
## nbayes.class   0   1
##            0  77  13
##            1  13 150
mean(nbayes.class != Boston.test$crime01)
## [1] 0.1027668
# KNN K=1
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=1)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  31 155
##           1  59   8
mean(Bosknn.pred !=crime01.test)
## [1] 0.8458498
# KNN K=50
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=50)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  37  14
##           1  53 149
mean(Bosknn.pred !=crime01.test)
## [1] 0.2648221

Logistic regression provided the lowest error rate of all the models at 9.09%. The error rate for the LDA and Naive Bayes were similar at 10.67% and 10.28% respectively, while the KNN classifier was much higher at K=1 with and error rate of 84.58% and K=50 having an error rate of 26.48%. In order to compare the models accurately, the same variables were used for each model. The variables that were chosen were indus, nox, age, dis, rad, and tax because of their high correlation with the dependent variable crime01.