d <- ProCOVIDCty %>%select(!footnote) %>%pivot_longer(cols =13:19, names_to ="race", values_to ="values") %>%pivot_wider(names_from = indicator, values_from ="values")d$`Distribution of all-cause deaths (%)`<- d$`Distribution of all-cause deaths (%)`%>%as.numeric()d$`Distribution of COVID-19 deaths (%)`<- d$`Distribution of COVID-19 deaths (%)`%>%as.numeric()d$`Distribution of population (%)`<- d$`Distribution of population (%)`%>%as.numeric()d$burden = d$`Distribution of COVID-19 deaths (%)`/ d$`Distribution of population (%)`data <-split(d, with(d, c(race)), drop =TRUE)d$fips <- d$fipscode
library(usmap)data$non_hispanic_white$burden <-scale(data$non_hispanic_white$burden)data$non_hispanic_black$burden <-scale(data$non_hispanic_black$burden)data$hispanic$burden <-scale(data$hispanic$burden)plot_usmap(data = data$non_hispanic_white, regions ="counties", values ="burden")
plot_usmap(data = data$non_hispanic_black, regions ="counties", values ="burden")
plot_usmap(data = data$hispanic, regions ="counties", values ="burden")