# Load packages

# Core
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.2
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6      ✔ purrr   0.3.4 
## ✔ tibble  3.1.8      ✔ dplyr   1.0.10
## ✔ tidyr   1.2.0      ✔ stringr 1.4.1 
## ✔ readr   2.1.2      ✔ forcats 0.5.2 
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(tidyquant)
## Warning: package 'tidyquant' was built under R version 4.2.2
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## 
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## 
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo

Goal

Take raw prices of five individual stocks and transform them into monthly returns five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

1 Import stock prices

# Choose Stocks 
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x = symbols, 
                 get = "stock.prices",
                 from = "2012-01-01",
                 to = "2016-01-01")

2 Convert prices to returns

asset_returns_tbl <- prices %>% 
    
    group_by(symbol) %>% 
    tq_transmute(select = adjusted, 
                 mutate_fun = periodReturn, 
                 period = "quarterly",
                 type = "log") %>% 
    ungroup () %>% 
    
    set_names(c("asset", "date", "returns"))

asset_returns_tbl
## # A tibble: 80 × 3
##    asset date        returns
##    <chr> <date>        <dbl>
##  1 SPY   2012-03-30  0.104  
##  2 SPY   2012-06-29 -0.0289 
##  3 SPY   2012-09-28  0.0615 
##  4 SPY   2012-12-31 -0.00383
##  5 SPY   2013-03-28  0.0999 
##  6 SPY   2013-06-28  0.0289 
##  7 SPY   2013-09-30  0.0511 
##  8 SPY   2013-12-31  0.100  
##  9 SPY   2014-03-31  0.0169 
## 10 SPY   2014-06-30  0.0503 
## # … with 70 more rows

3 Make plot

asset_returns_tbl %>% 
    
    ggplot(aes(x = returns)) + 
    geom_density(aes(color = asset), show.legend = FALSE, aplha = 1) + 
    geom_histogram(aes(fill = asset), show.legend = FALSE, aplha = 0.3, binwidth = 0.01) + 
    facet_wrap(~asset, ncol = 1) + 
    
    # Labeling 
    labs(title = "Distribution of Monthly Returns, 2012-2016",
         y = "Frequency",
         x = "Rate of Returns",
         caption = "A Typic Monthly Return is Higher for SPY and IJS than for AGG, EEM, and EFA.")
## Warning: Ignoring unknown parameters: aplha
## Ignoring unknown parameters: aplha