1. This question should be answered using the Weekly data set, which is part of the ISLR package. This data contains 1,089 weekly stock returns for 21 years, from the beginning of 1990 to the end of 2010.

A.)Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

library(ISLR)
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 
pairs(Weekly)

cor(subset(Weekly, select = -Direction))
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

Baseup upon the visuals above, there appears to be a relationship between Year and Volume. There seems to be no other patterns in the data.

B.)Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

logit_model <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
                   data = Weekly,
                   family = binomial)
summary(logit_model)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Based upond the outcome above there appears to be a statistical signifigance with a p-value of less than 0.05 in “Lag2”.

C.)Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

show_model_performance <- function(predicted_status, observed_status) {
  confusion_matrix <- table(predicted_status, 
                            observed_status, 
                            dnn = c("Predicted Status", "Observed Status"))
  print(confusion_matrix)
  
  error_rate <- mean(predicted_status != observed_status)

  cat("\n") # \n means newline so it just prints a blank line
  cat("         Error Rate:", 100 * error_rate, "%\n")
  cat("Correctly Predicted:", 100 * (1-error_rate), "%\n")
  cat("False Positive Rate:", 100 * confusion_matrix[2,1] / sum(confusion_matrix[,1]), "%\n")
  cat("False Negative Rate:", 100 * confusion_matrix[1,2] / sum(confusion_matrix[,2]), "%\n")
}

# get prediction as Up/Down direction - only needed for GLM models
predict_glm_direction <- function(model, newdata = NULL) {
  predictions <- predict(model, newdata, type="response")
  return(as.factor(ifelse(predictions < 0.5, "Down", "Up")))
}
predicted_direction <- predict_glm_direction(logit_model)

show_model_performance(predicted_direction, Weekly$Direction)
##                 Observed Status
## Predicted Status Down  Up
##             Down   54  48
##             Up    430 557
## 
##          Error Rate: 43.89348 %
## Correctly Predicted: 56.10652 %
## False Positive Rate: 88.84298 %
## False Negative Rate: 7.933884 %

D.) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train <- (Weekly$Year < 2009)
train_set <- Weekly[train, ]
test_set <- Weekly[!train, ]

logit_model <- glm(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)

predicted_direction <- predict_glm_direction(logit_model, test_set)
show_model_performance(predicted_direction, test_set$Direction)
##                 Observed Status
## Predicted Status Down Up
##             Down    9  5
##             Up     34 56
## 
##          Error Rate: 37.5 %
## Correctly Predicted: 62.5 %
## False Positive Rate: 79.06977 %
## False Negative Rate: 8.196721 %

E.) Repeat (d) using LDA.

library(MASS)

lda_model <- lda(Direction ~ Lag2, data = Weekly, subset = train)

predictions <- predict(lda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
##                 Observed Status
## Predicted Status Down Up
##             Down    9  5
##             Up     34 56
## 
##          Error Rate: 37.5 %
## Correctly Predicted: 62.5 %
## False Positive Rate: 79.06977 %
## False Negative Rate: 8.196721 %

F.) Repeat (d) using QDA

qda_model <- qda(Direction ~ Lag2, data = Weekly, subset = train)

predictions <- predict(qda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
##                 Observed Status
## Predicted Status Down Up
##             Down    0  0
##             Up     43 61
## 
##          Error Rate: 41.34615 %
## Correctly Predicted: 58.65385 %
## False Positive Rate: 100 %
## False Negative Rate: 0 %

G.) Repeat (d) using KNN with K = 1.

library(class)

run_knn <- function(train, test, train_class, test_class, k) {
  set.seed(12345)
  predictions <- knn(train, test, train_class, k)
  
  cat("KNN: k =", k, "\n")
  show_model_performance(predictions, test_class)
}
train_matrix <- as.matrix(train_set$Lag2)
test_matrix <- as.matrix(test_set$Lag2)

run_knn(train_matrix, test_matrix, train_set$Direction, test_set$Direction, k = 1)
## KNN: k = 1 
##                 Observed Status
## Predicted Status Down Up
##             Down   21 29
##             Up     22 32
## 
##          Error Rate: 49.03846 %
## Correctly Predicted: 50.96154 %
## False Positive Rate: 51.16279 %
## False Negative Rate: 47.54098 %

H.) Which of these methods appears to provide the best results on this data? The methods that appear to provide the best results would be LDA and Logistic regression based upon the above data/outsomes.

I.) Experiment with different combinations of predictors, including possible transformations and interactions for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

#interaction of Lag2
logit_model <- glm(Direction ~ Lag1 * Lag2, data = Weekly, family = binomial, subset = train)

predicted_direction <- predict_glm_direction(logit_model, test_set)
show_model_performance(predicted_direction, test_set$Direction)
##                 Observed Status
## Predicted Status Down Up
##             Down    7  8
##             Up     36 53
## 
##          Error Rate: 42.30769 %
## Correctly Predicted: 57.69231 %
## False Positive Rate: 83.72093 %
## False Negative Rate: 13.11475 %
#interaction of LDA between Lag1 * Lag2
lda_model <- lda(Direction ~ Lag1 * Lag2, data = Weekly, subset = train)
predictions <- predict(lda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
##                 Observed Status
## Predicted Status Down Up
##             Down    7  8
##             Up     36 53
## 
##          Error Rate: 42.30769 %
## Correctly Predicted: 57.69231 %
## False Positive Rate: 83.72093 %
## False Negative Rate: 13.11475 %
#the QDA model with the sqrt(abs(lag2))
qda_model <- qda(Direction ~ Lag2 + sqrt(abs(Lag2)), data = Weekly, subset = train)
predictions <- predict(qda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
##                 Observed Status
## Predicted Status Down Up
##             Down   12 13
##             Up     31 48
## 
##          Error Rate: 42.30769 %
## Correctly Predicted: 57.69231 %
## False Positive Rate: 72.09302 %
## False Negative Rate: 21.31148 %
# The KNN with k =10
run_knn(train_matrix, test_matrix, train_set$Direction, test_set$Direction, k = 10)
## KNN: k = 10 
##                 Observed Status
## Predicted Status Down Up
##             Down   18 21
##             Up     25 40
## 
##          Error Rate: 44.23077 %
## Correctly Predicted: 55.76923 %
## False Positive Rate: 58.13953 %
## False Negative Rate: 34.42623 %
# The KNN with k = 100
run_knn(train_matrix, test_matrix, train_set$Direction, test_set$Direction, k = 100)
## KNN: k = 100 
##                 Observed Status
## Predicted Status Down Up
##             Down   10 13
##             Up     33 48
## 
##          Error Rate: 44.23077 %
## Correctly Predicted: 55.76923 %
## False Positive Rate: 76.74419 %
## False Negative Rate: 21.31148 %

By looking at the above computations, LDA and Logistic regression appear to have a better outcome/preformance based upon test error rate.

  1. In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto dataset from the ISLR package.

A.) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables. We can use ifelse() to create a variable with values of 0 or 1, or we could just use the logical TRUE/FALSE which is even easier to create.

Auto$mpg01 <- Auto$mpg > median(Auto$mpg)
head(Auto$mpg01, n = 20)
##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE

B.) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

cor(subset(Auto, select = -name))
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
## mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
##              acceleration       year     origin      mpg01
## mpg             0.4233285  0.5805410  0.5652088  0.8369392
## cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
## displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
## horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
## weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
## acceleration    1.0000000  0.2903161  0.2127458  0.3468215
## year            0.2903161  1.0000000  0.1815277  0.4299042
## origin          0.2127458  0.1815277  1.0000000  0.5136984
## mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(Auto)

Based upon the above graphics, displacement,cylinders,weight and horsepower appear to be likely used in the prediction of mpg01

C.) Split the data into a training set and a test set.

train <- sample(nrow(Auto) * 0.7)
train_set <- Auto[train, ]
test_set <- Auto[-train, ]

D.) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

lda_model <- lda(mpg01 ~ cylinders + weight + displacement + horsepower, 
                 data = Auto, 
                 subset = train)

predictions <- predict(lda_model, test_set)
show_model_performance(predictions$class, test_set$mpg01)
##                 Observed Status
## Predicted Status FALSE TRUE
##            FALSE    18   16
##            TRUE      2   82
## 
##          Error Rate: 15.25424 %
## Correctly Predicted: 84.74576 %
## False Positive Rate: 10 %
## False Negative Rate: 16.32653 %

E.) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda_model <- qda(mpg01 ~ cylinders + weight + displacement + horsepower, 
                 data = Auto, 
                 subset = train)

predictions <- predict(qda_model, test_set)
show_model_performance(predictions$class, test_set$mpg01)
##                 Observed Status
## Predicted Status FALSE TRUE
##            FALSE    18   19
##            TRUE      2   79
## 
##          Error Rate: 17.79661 %
## Correctly Predicted: 82.20339 %
## False Positive Rate: 10 %
## False Negative Rate: 19.38776 %

F.) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

logit_model <- glm(mpg01 ~ cylinders + weight + displacement + horsepower, 
                   data = Auto, 
                   family = binomial,
                   subset = train)

predictions <- predict(logit_model, test_set, type = "response")
show_model_performance(predictions > 0.5, test_set$mpg01)
##                 Observed Status
## Predicted Status FALSE TRUE
##            FALSE    20   21
##            TRUE      0   77
## 
##          Error Rate: 17.79661 %
## Correctly Predicted: 82.20339 %
## False Positive Rate: 0 %
## False Negative Rate: 21.42857 %

G.) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

vars <- c("cylinders", "weight", "displacement", "horsepower")
train_matrix <- as.matrix(train_set[, vars])
test_matrix <- as.matrix(test_set[, vars])

predictions <- knn(train_matrix, test_matrix, train_set$mpg01, 1)

run_knn(train_matrix, test_matrix, train_set$mpg01, test_set$mpg01, k = 1)
## KNN: k = 1 
##                 Observed Status
## Predicted Status FALSE TRUE
##            FALSE    18   24
##            TRUE      2   74
## 
##          Error Rate: 22.0339 %
## Correctly Predicted: 77.9661 %
## False Positive Rate: 10 %
## False Negative Rate: 24.4898 %
run_knn(train_matrix, test_matrix, train_set$mpg01, test_set$mpg01, k = 10)
## KNN: k = 10 
##                 Observed Status
## Predicted Status FALSE TRUE
##            FALSE    20   22
##            TRUE      0   76
## 
##          Error Rate: 18.64407 %
## Correctly Predicted: 81.35593 %
## False Positive Rate: 0 %
## False Negative Rate: 22.44898 %
run_knn(train_matrix, test_matrix, train_set$mpg01, test_set$mpg01, k = 100)
## KNN: k = 100 
##                 Observed Status
## Predicted Status FALSE TRUE
##            FALSE    20   25
##            TRUE      0   73
## 
##          Error Rate: 21.18644 %
## Correctly Predicted: 78.81356 %
## False Positive Rate: 0 %
## False Negative Rate: 25.5102 %

16.) Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median.Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
attach(Boston)

the code below will create a binary “crim” variable

crime01 <- rep(0, length(crim))
crime01[crim > median(crim)] <- 1
Boston= data.frame(Boston,crime01)

the code below will be splitting the first half of the dataset

train = 1:(dim(Boston)[1]/2)
test = (dim(Boston)[1]/2 + 1):dim(Boston)[1]
Boston.train = Boston[train, ]
Boston.test = Boston[test, ]
crime01.test = crime01[test]

Logistic regression below

set.seed(1)
Boston.fit <-glm(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Boston.probs = predict(Boston.fit, Boston.test, type = "response")
Boston.pred = rep(0, length(Boston.probs))
Boston.pred[Boston.probs > 0.5] = 1
table(Boston.pred, crime01.test)
##            crime01.test
## Boston.pred   0   1
##           0  75   8
##           1  15 155
mean(Boston.pred != crime01.test)
## [1] 0.09090909
summary(Boston.fit)
## 
## Call:
## glm(formula = crime01 ~ indus + nox + age + dis + rad + tax, 
##     family = binomial, data = Boston.train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.97810  -0.21406  -0.03454   0.47107   3.04502  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -42.214032   7.617440  -5.542 2.99e-08 ***
## indus        -0.213126   0.073236  -2.910  0.00361 ** 
## nox          80.868029  16.066473   5.033 4.82e-07 ***
## age           0.003397   0.012032   0.282  0.77772    
## dis           0.307145   0.190502   1.612  0.10690    
## rad           0.847236   0.183767   4.610 4.02e-06 ***
## tax          -0.013760   0.004956  -2.777  0.00549 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 329.37  on 252  degrees of freedom
## Residual deviance: 144.44  on 246  degrees of freedom
## AIC: 158.44
## 
## Number of Fisher Scoring iterations: 8

LDA below

Boston.ldafit <-lda(crime01~ indus+nox+age+dis+rad+tax, data=Boston.train,family=binomial)
Bostonlda.pred = predict(Boston.ldafit, Boston.test)
table(Bostonlda.pred$class, crime01.test)
##    crime01.test
##       0   1
##   0  81  18
##   1   9 145
mean(Bostonlda.pred$class != crime01.test)
## [1] 0.1067194

KNN Below

#K=1
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=1)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  31 155
##           1  59   8
mean(Bosknn.pred !=crime01.test)
## [1] 0.8458498
#K=100
train.K=cbind(indus,nox,age,dis,rad,tax)[train,]
test.K=cbind(indus,nox,age,dis,rad,tax)[test,]
Bosknn.pred=knn(train.K, test.K, crime01.test, k=100)
table(Bosknn.pred,crime01.test)
##            crime01.test
## Bosknn.pred   0   1
##           0  21   6
##           1  69 157
mean(Bosknn.pred !=crime01.test)
## [1] 0.2964427

Based upon the outcomes above,the classification method logistic regression appeared to have the lowest test error rate of 9.09%. the only variables that were statistically significant were inud, nox, rad, and tax. Each model consisted of the same variables which help determine the best association with crime01. k=1 had the highest error rate which made the model ineffective, as the k value increased the error rate did improve but was not as low as LDA or the logistic regression.