Обилия и соотношения таксонов
my_col <- function(type, div = div){
# type = "coast"
div %>%
select(type = {{type}}, Collembola:Oribatida_total) %>%
pivot_longer(names_to = "taxa", values_to = "abu", -type) %>%
group_by(type, taxa) %>%
summarise(abu = sum(abu), .groups = "drop") %>%
ggplot(aes(x = type, y = abu, fill = taxa))
}
Берег
Обилия
div %>%
my_col(type = "coast") +
geom_col(position = "dodge") +
labs(x = "Coast", fill = "", y = "Abundance raw")

Соотношения обилий
div %>%
my_col(type = "coast") +
geom_col(position = "fill") +
labs(x = "Coast", fill = "", y = "Abundance relative")

Уклон
Обилия
div %>%
my_col(type = "skew") +
geom_col(position = "dodge") +
labs(x = "skew", fill = "", y = "Abundance raw")

Соотношения обилий
div %>%
my_col(type = "skew") +
geom_col(position = "fill") +
labs(x = "skew", fill = "", y = "Abundance relative")

Почва
Обилия
div %>%
my_col(type = "soil") +
geom_col(position = "dodge") +
labs(x = "soil", fill = "", y = "Abundance raw")

Соотношения обилий
div %>%
my_col(type = "soil") +
geom_col(position = "fill") +
labs(x = "soil", fill = "", y = "Abundance relative")

Проективное покрытие травостоя
Обилия
div %>%
my_col(type = "vegetation") +
geom_col(position = "dodge") +
labs(x = "Vegetation cover, %", y = "Abundance raw", fill = "")

Соотношения обилий
div %>%
my_col(type = "vegetation") +
geom_col(position = "fill") +
labs(x = "Vegetation cover, %", y = "Abundance relative", fill = "")

Доминантные виды растений
Обилия
div %>%
my_col(type = "plants.d") +
geom_col(position = "dodge") +
labs(x = "Dominant plants", y = "Abundance raw", fill = "") +
theme(axis.text.x = element_text(angle = 30, hjust = 0.9))

Соотношения обилий
div %>%
my_col(type = "plants.d") +
geom_col(position = "fill") +
labs(x = "Dominant plants", y = "Abundance relative")+
theme(axis.text.x = element_text(angle = 30, hjust = 0.9))

Разнообразие
Берег
div %>%
select(coast:mst_iH) %>%
pivot_longer(names_to = "v1", values_to = "vr", -c(1:7)) %>%
filter(!is.na(vr)) %>%
separate(v1, into = c("taxa", "diversity"), sep = "_", extra = "merge") %>%
mutate(diversity2 = case_when(
diversity == "obs_m" ~"4. Abundance",
diversity == "obs_qD" ~ "1. Observed N of sp.",
diversity == "iH" ~ "3. Shannon index",
TRUE ~ "2. Rarefied N of sp."
), taxa = case_when(taxa == "orb" ~ "Oribatida", TRUE ~ "Mesostigmata")) %>%
ggplot(aes(x = coast, y = vr, fill = taxa)) +
geom_boxplot() +
facet_wrap(~diversity2, scales = "free") +
labs(subtitle = "Oribatida rarefied to 20, Mesostigmata to 10 individuals",
y = NULL, x = NULL, fill = "")

Уклон
div %>%
select(coast:mst_iH) %>%
pivot_longer(names_to = "v1", values_to = "vr", -c(1:7)) %>%
filter(!is.na(vr)) %>%
separate(v1, into = c("taxa", "diversity"), sep = "_", extra = "merge") %>%
mutate(diversity2 = case_when(
diversity == "obs_m" ~"4. Abundance",
diversity == "obs_qD" ~ "1. Observed N of sp.",
diversity == "iH" ~ "3. Shannon index",
TRUE ~ "2. Rarefied N of sp."
), taxa = case_when(taxa == "orb" ~ "Oribatida", TRUE ~ "Mesostigmata")) %>%
ggplot(aes(x = skew, y = vr, fill = taxa)) +
geom_boxplot() +
facet_wrap(~diversity2, scales = "free") +
labs(subtitle = "Oribatida rarefied to 20, Mesostigmata to 10 individuals",
y = NULL, x = NULL, fill = "")

Почва
div %>%
select(coast:mst_iH) %>%
pivot_longer(names_to = "v1", values_to = "vr", -c(1:7)) %>%
filter(!is.na(vr)) %>%
separate(v1, into = c("taxa", "diversity"), sep = "_", extra = "merge") %>%
mutate(diversity2 = case_when(
diversity == "obs_m" ~"4. Abundance",
diversity == "obs_qD" ~ "1. Observed N of sp.",
diversity == "iH" ~ "3. Shannon index",
TRUE ~ "2. Rarefied N of sp."
), taxa = case_when(taxa == "orb" ~ "Oribatida", TRUE ~ "Mesostigmata")) %>%
ggplot(aes(x = soil, y = vr, fill = taxa)) +
geom_boxplot() +
facet_wrap(~diversity2, scales = "free") +
labs(subtitle = "Oribatida rarefied to 20, Mesostigmata to 10 individuals",
y = NULL, x = NULL, fill = "")

Проективное покрытие растительности
div %>%
select(coast:mst_iH) %>%
pivot_longer(names_to = "v1", values_to = "vr", -c(1:7)) %>%
filter(!is.na(vr)) %>%
separate(v1, into = c("taxa", "diversity"), sep = "_", extra = "merge") %>%
mutate(diversity2 = case_when(
diversity == "obs_m" ~"4. Abundance",
diversity == "obs_qD" ~ "1. Observed N of sp.",
diversity == "iH" ~ "3. Shannon index",
TRUE ~ "2. Rarefied N of sp."
), taxa = case_when(taxa == "orb" ~ "Oribatida", TRUE ~ "Mesostigmata")) %>%
ggplot(aes(x = vegetation, y = vr, fill = taxa)) +
geom_boxplot() +
facet_wrap(~diversity2, scales = "free") +
labs(subtitle = "Oribatida rarefied to 20, Mesostigmata to 10 individuals",
y = NULL, x = NULL, fill = "")

Доминантные виды растений
div %>%
select(coast:mst_iH) %>%
pivot_longer(names_to = "v1", values_to = "vr", -c(1:7)) %>%
filter(!is.na(vr)) %>%
separate(v1, into = c("taxa", "diversity"), sep = "_", extra = "merge") %>%
mutate(diversity2 = case_when(
diversity == "obs_m" ~"4. Abundance",
diversity == "obs_qD" ~ "1. Observed N of sp.",
diversity == "iH" ~ "3. Shannon index",
TRUE ~ "2. Rarefied N of sp."
), taxa = case_when(taxa == "orb" ~ "Oribatida", TRUE ~ "Mesostigmata")) %>%
ggplot(aes(x = plants.d, y = vr, fill = taxa)) +
geom_boxplot() +
facet_grid(rows = vars(diversity2),scales = "free") +
labs(subtitle = "Oribatida rarefied to 20, Mesostigmata to 10 individuals",
y = NULL, x = "Dominant plant species", fill = "") +
theme(axis.text.x = element_text(angle = 30, hjust = 0.9))

Струкруа населения: ординация
# dissimilarity -----------------------------------------------------------
dis2 <- list()
dis2$or.bin <- or.w %>%
select(!starts_with("Sw")) %>%
column_to_rownames("sp") %>%
select_if(function(a){sum(a)>0}) %>%
t %>%
as.data.frame() %>%
vegan::vegdist(method = "jaccard", binary = TRUE)
dis2$or.num <- or.w %>%
select(!starts_with("Sw")) %>%
column_to_rownames("sp") %>%
select_if(function(a){sum(a)>0}) %>%
t %>%
as.data.frame() %>%
vegan::vegdist(method = "bray", binary = FALSE)
dis2$ms.bin <- ms.w %>%
select(!starts_with("Sw")) %>%
column_to_rownames("sp") %>%
select_if(function(a){sum(a)>0}) %>%
t %>%
as.data.frame() %>%
vegan::vegdist(method = "jaccard", binary = TRUE)
dis2$ms.num <- ms.w %>%
select(!starts_with("Sw")) %>%
column_to_rownames("sp") %>%
select_if(function(a){sum(a)>0}) %>%
t %>%
as.data.frame() %>%
vegan::vegdist(method = "bray", binary = FALSE)
# Multidimensional --------------------------------------------------------
PCOA2 <- dis2 %>%
lapply(function(a){
p <- ape::pcoa(a)
e <- p$values$Eigenvalues
if(min(e) < 0){
e <- e + abs(min(e))
e <- round(e/sum(e)*100, 1)
} else {
e <- round(e/sum(e)*100, 1)
}
p <- tibble::tibble(id = rownames(p$vectors),
axis1 = p$vectors[,1],
axis2 = p$vectors[,2])
list(eig = e, pc = p)
}) %>%
purrr::transpose()
M2 <- PCOA2 %>%
pluck("pc") %>%
map_df(rbind, .id = "D") %>%
separate(D, into = c("taxa", "type")) %>%
left_join(div, by = "id") %>%
select(taxa:plants.d) %>%
mutate(
axis1 = case_when(taxa == "ms" & type == "bin" ~ axis1*-1, TRUE ~ axis1),
axis1 = case_when(taxa == "or" & type == "bin" ~ axis1*-1, TRUE ~ axis1),
taxa = case_when(taxa == "or" ~ "Oribatida", TRUE ~ "Mesostigmata"),
type = case_when(type == "bin" ~ "Binary data",
TRUE ~ "Numeric data")) %>%
filter(!is.na(coast))
Тополгия проб в многомерном пространстве
Интерактивная
plotly::ggplotly(
PCOA2 %>%
pluck("eig") %>%
lapply(function(a)data.frame(
ax1 = paste0(a[1], " %"), ax2 = paste0(a[2], " %"))) %>%
map_df(rbind, .id = "D") %>%
separate(D, into = c("taxa", "type")) %>%
mutate(
taxa = case_when(taxa == "or" ~ "Oribatida", TRUE ~ "Mesostigmata"),
type = case_when(type == "bin" ~ "Binary data",
TRUE ~ "Numeric data")) %>%
ggplot() +
geom_text(aes(x = 0.3, y = -0.4, label = ax1)) +
geom_text(aes(x = -0.55, y = 0.3, label = ax2), angle = 90) +
geom_point(aes(x = axis1, y = axis2, color = id), data = M2) +
facet_grid(rows = vars(type), cols = vars(taxa)) +
labs(x = NULL, y = NULL, title = "General topology") +
theme(legend.position = "none")
)
С %% объясненной дисперсии по осям
PCOA2 %>%
pluck("eig") %>%
lapply(function(a)data.frame(
ax1 = paste0(a[1], " %"), ax2 = paste0(a[2], " %"))) %>%
map_df(rbind, .id = "D") %>%
separate(D, into = c("taxa", "type")) %>%
mutate(
taxa = case_when(taxa == "or" ~ "Oribatida", TRUE ~ "Mesostigmata"),
type = case_when(type == "bin" ~ "Binary data",
TRUE ~ "Numeric data")) %>%
ggplot() +
geom_text(aes(x = 0.3, y = -0.4, label = ax1)) +
geom_text(aes(x = -0.55, y = 0.3, label = ax2), angle = 90) +
geom_point(aes(x = axis1, y = axis2, color = id), data = M2) +
facet_grid(rows = vars(type), cols = vars(taxa)) +
labs(x = NULL, y = NULL, title = "General topology") +
theme(legend.position = "none")

Берег
ggplot(M2, aes(x = axis1, y = axis2, color = coast)) +
geom_point() +
stat_ellipse() +
facet_grid(rows = vars(type), cols = vars(taxa)) +
labs(x = NULL, y = NULL)

Уклон
ggplot(M2, aes(x = axis1, y = axis2, color = skew)) +
geom_point() +
stat_ellipse() +
facet_grid(rows = vars(type), cols = vars(taxa)) +
labs(x = NULL, y = NULL)

Почва
ggplot(M2, aes(x = axis1, y = axis2, color = soil)) +
geom_point() +
stat_ellipse() +
facet_grid(rows = vars(type), cols = vars(taxa)) +
labs(x = NULL, y = NULL)

Доминантные виды растений
M2 %>%
ggplot(aes(x = axis1, y = axis2, color = plants.d)) +
geom_point() +
stat_ellipse() +
facet_grid(rows = vars(type), cols = vars(taxa)) +
labs(x = NULL, y = NULL, color = "Dominant plant species")

Струкруа населения: PERMANOVA
- soil - почва
- coast - берег
- vegetation - ПП растительности, %
- plants.d - доминантные виды растений
Oribatida, состав
labs %>%
filter(id %in% attr(dis2$or.bin, "Labels")) %>%
# mutate(vegetation = as.numeric(vegetation)) %>%
vegan::adonis2(
dis2$or.bin ~ soil + coast + vegetation + plants.d,
data = ., permutations = 9999)
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 9999
##
## vegan::adonis2(formula = dis2$or.bin ~ soil + coast + vegetation + plants.d, data = ., permutations = 9999)
## Df SumOfSqs R2 F Pr(>F)
## soil 1 0.4896 0.01978 1.8239 0.0529 .
## coast 1 1.8373 0.07422 6.8445 0.0001 ***
## vegetation 4 4.0395 0.16319 3.7621 0.0001 ***
## plants.d 7 4.6975 0.18977 2.4999 0.0001 ***
## Residual 51 13.6902 0.55305
## Total 64 24.7541 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# vegan::adonis2(dis2$or.bin ~ soil + coast + plants.d + vegetation ,
# data = filter(labs, id %in% attr(dis2$or.bin, "Labels")),
# permutations = 9)
# vegan::adonis2(dis2$or.bin ~ soil + coast + vegetation + plants.d,
# data = filter(labs, id %in% attr(dis2$or.bin, "Labels")),
# permutations = 9)
# vegan::adonis2(dis2$or.bin ~ vegetation + plants.d + soil + coast,
# data = filter(labs, id %in% attr(dis2$or.bin, "Labels")),
# permutations = 9)
# vegan::adonis2(dis2$or.bin ~ plants.d + vegetation + soil + coast,
# data = filter(labs, id %in% attr(dis2$or.bin, "Labels")),
# permutations = 9)
Видовой соостав орибатид в пробах на 35.3 % определяется видовым
составом и проективным покрытием растений (0.1632 + 0.1898 в таблице).
От почвы и берега он зависит в лучшем случае на 9.4 % (а может
оказаться, что и меньше)
Oribatida, структура
vegan::adonis2(dis2$or.num ~ coast + soil + vegetation + plants.d,
data = filter(labs, id %in% attr(dis2$or.num, "Labels")),
permutations = 9999)
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 9999
##
## vegan::adonis2(formula = dis2$or.num ~ coast + soil + vegetation + plants.d, data = filter(labs, id %in% attr(dis2$or.num, "Labels")), permutations = 9999)
## Df SumOfSqs R2 F Pr(>F)
## coast 2 1.9425 0.07091 2.8812 1e-04 ***
## vegetation 4 3.4056 0.12433 2.5257 1e-04 ***
## plants.d 7 4.8520 0.17713 2.0562 1e-04 ***
## Residual 51 17.1918 0.62762
## Total 64 27.3919 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mesostigmata, состав
vegan::adonis2(dis2$ms.bin ~ coast + soil + vegetation + plants.d,
data = filter(labs, id %in% attr(dis2$ms.bin, "Labels")),
permutations = 9999)
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 9999
##
## vegan::adonis2(formula = dis2$ms.bin ~ coast + soil + vegetation + plants.d, data = filter(labs, id %in% attr(dis2$ms.bin, "Labels")), permutations = 9999)
## Df SumOfSqs R2 F Pr(>F)
## coast 2 2.744 0.08657 4.5178 1e-04 ***
## vegetation 4 5.049 0.15929 4.1565 1e-04 ***
## plants.d 7 6.291 0.19847 2.9594 1e-04 ***
## Residual 58 17.614 0.55568
## Total 71 31.699 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mesostigmata, структура
vegan::adonis2(dis2$ms.num ~ coast + soil + vegetation + plants.d,
data = filter(labs, id %in% attr(dis2$ms.num, "Labels")),
permutations = 9999)
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 9999
##
## vegan::adonis2(formula = dis2$ms.num ~ coast + soil + vegetation + plants.d, data = filter(labs, id %in% attr(dis2$ms.num, "Labels")), permutations = 9999)
## Df SumOfSqs R2 F Pr(>F)
## coast 2 2.323 0.07181 3.4933 1e-04 ***
## vegetation 4 4.676 0.14454 3.5158 1e-04 ***
## plants.d 7 6.066 0.18752 2.6064 1e-04 ***
## Residual 58 19.283 0.59613
## Total 71 32.348 1.00000
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Задействованные данные
Обилие общее
formattable::formattable(div[,c(1,17:20)])
id
|
Collembola
|
Prostigmata
|
Mesostigmata_total
|
Oribatida_total
|
PbAe1
|
4
|
5
|
0
|
0
|
PbAe2
|
24
|
14
|
0
|
0
|
PbAe3
|
2
|
3
|
1
|
0
|
PbAe4
|
1090
|
15
|
0
|
0
|
PbAe5
|
475
|
5
|
1
|
1
|
PbDe1
|
15
|
0
|
2
|
0
|
PbDe2
|
9
|
1
|
2
|
0
|
PbDe3
|
49
|
1
|
4
|
0
|
PbDe4
|
24
|
24
|
28
|
5
|
PbDe5
|
510
|
5
|
35
|
2
|
PbPo1
|
13
|
4
|
4
|
2
|
PbPo2
|
3
|
3
|
2
|
0
|
PbPo3
|
534
|
6
|
47
|
4
|
PbPo4
|
740
|
21
|
42
|
11
|
PbPo5
|
430
|
11
|
10
|
0
|
PbTu1
|
58
|
170
|
12
|
14
|
PbTu2
|
91
|
71
|
21
|
18
|
PbTu3
|
135
|
220
|
46
|
23
|
PbTu4
|
162
|
260
|
7
|
1
|
PbTu5
|
337
|
93
|
19
|
19
|
PbTl1
|
82
|
62
|
1
|
1
|
PbTl2
|
94
|
49
|
34
|
3
|
PbTl3
|
61
|
78
|
11
|
2
|
PbTl4
|
96
|
355
|
3
|
3
|
PbTl5
|
512
|
97
|
13
|
48
|
SdJj1
|
81
|
92
|
21
|
122
|
SdJj2
|
137
|
219
|
21
|
61
|
SdJj3
|
92
|
88
|
6
|
2
|
SdJj4
|
3410
|
25
|
5
|
59
|
SdJj5
|
1090
|
11
|
5
|
39
|
SdEq1
|
325
|
224
|
20
|
39
|
SdEq2
|
137
|
168
|
6
|
44
|
SdEq3
|
120
|
822
|
11
|
4
|
SdEq4
|
1310
|
71
|
6
|
28
|
SdEq5
|
1480
|
51
|
11
|
72
|
SdTu1
|
1110
|
83
|
37
|
95
|
SdTu2
|
265
|
102
|
33
|
8
|
SdTu3
|
189
|
111
|
26
|
24
|
SdTu4
|
62
|
39
|
8
|
4
|
SdTu5
|
61
|
21
|
13
|
2
|
SdEc1
|
98
|
240
|
13
|
3
|
SdEc2
|
96
|
336
|
8
|
179
|
SdEc3
|
129
|
768
|
83
|
188
|
SdEc4
|
158
|
137
|
17
|
23
|
SdEc5
|
31
|
709
|
72
|
144
|
SdTa1
|
77
|
285
|
20
|
38
|
SdTa2
|
305
|
458
|
14
|
66
|
SdTa3
|
93
|
891
|
100
|
169
|
SdTa4
|
194
|
74
|
10
|
1
|
SdTa5
|
89
|
190
|
18
|
2
|
SdJm1
|
56
|
452
|
4
|
94
|
SdJm2
|
86
|
141
|
7
|
23
|
SdJm3
|
11
|
309
|
13
|
59
|
SdJm4
|
478
|
102
|
13
|
79
|
SdJm5
|
332
|
119
|
5
|
20
|
SdFn1
|
49
|
25
|
31
|
111
|
SdFn2
|
318
|
123
|
58
|
104
|
SdFn3
|
124
|
197
|
19
|
49
|
SdFn4
|
61
|
5
|
11
|
4
|
SdFn5
|
101
|
22
|
8
|
10
|
RsFd1
|
115
|
138
|
23
|
80
|
RsFd2
|
74
|
98
|
23
|
34
|
RsFd3
|
102
|
86
|
11
|
54
|
RsFd4
|
278
|
154
|
20
|
89
|
RsFd5
|
145
|
270
|
46
|
151
|
SdCJ1
|
0
|
42
|
2
|
2
|
SdCJ2
|
0
|
5
|
1
|
3
|
SdCJ3
|
9
|
33
|
1
|
55
|
SdCJ4
|
1
|
21
|
2
|
1
|
SdCJ5
|
0
|
14
|
1
|
1
|
SdCS1
|
2
|
37
|
2
|
33
|
SdCS2
|
13
|
57
|
2
|
26
|
SdCS3
|
5
|
75
|
2
|
37
|
SdCS4
|
2
|
73
|
7
|
28
|
SdCS5
|
5
|
97
|
2
|
29
|
Sw1
|
490
|
16
|
47
|
60
|
Sw2
|
10
|
83
|
1
|
71
|
Sw3
|
15
|
105
|
1
|
51
|
Sw4
|
9
|
43
|
3
|
33
|
Sw5
|
192
|
35
|
31
|
167
|
Разнообразие Oribatida
div %>%
select(id,
`Abundance` = orb_obs_m,
`Number of species` = orb_obs_qD,
`Rarefied number of species` = orb_d20_qD,
`Shannon index` = orb_iH) %>%
mutate_at(c("Abundance", "Number of species"), function(a){a[is.na(a)] <- 0; a}) %>%
formattable::formattable()
id
|
Abundance
|
Number of species
|
Rarefied number of species
|
Shannon index
|
PbAe1
|
0
|
0
|
NA
|
NA
|
PbAe2
|
0
|
0
|
NA
|
NA
|
PbAe3
|
0
|
0
|
NA
|
NA
|
PbAe4
|
0
|
0
|
NA
|
NA
|
PbAe5
|
1
|
1
|
1.000000
|
0.0000000
|
PbDe1
|
0
|
0
|
NA
|
NA
|
PbDe2
|
0
|
0
|
NA
|
NA
|
PbDe3
|
0
|
0
|
NA
|
NA
|
PbDe4
|
5
|
4
|
7.243466
|
1.3321790
|
PbDe5
|
1
|
1
|
1.000000
|
0.0000000
|
PbPo1
|
1
|
1
|
1.000000
|
0.0000000
|
PbPo2
|
0
|
0
|
NA
|
NA
|
PbPo3
|
4
|
4
|
8.318528
|
1.3862944
|
PbPo4
|
11
|
2
|
2.000000
|
0.4741393
|
PbPo5
|
0
|
0
|
NA
|
NA
|
PbTu1
|
14
|
3
|
3.535087
|
0.5091373
|
PbTu2
|
18
|
3
|
3.000000
|
0.6546696
|
PbTu3
|
22
|
3
|
2.909091
|
0.8192300
|
PbTu4
|
1
|
1
|
1.000000
|
0.0000000
|
PbTu5
|
18
|
5
|
5.188366
|
1.3784974
|
PbTl1
|
1
|
1
|
1.000000
|
0.0000000
|
PbTl2
|
3
|
2
|
2.333331
|
0.6365142
|
PbTl3
|
2
|
2
|
2.500000
|
0.6931472
|
PbTl4
|
2
|
1
|
1.000000
|
0.0000000
|
PbTl5
|
39
|
8
|
5.458073
|
1.3967087
|
SdJj1
|
122
|
2
|
1.999272
|
0.5917104
|
SdJj2
|
61
|
3
|
2.327786
|
0.6977461
|
SdJj3
|
2
|
1
|
1.000000
|
0.0000000
|
SdJj4
|
59
|
2
|
1.338983
|
0.0859155
|
SdJj5
|
39
|
2
|
1.999999
|
0.6528258
|
SdEq1
|
35
|
3
|
2.568345
|
0.5824257
|
SdEq2
|
42
|
3
|
2.731268
|
0.7270014
|
SdEq3
|
4
|
3
|
4.484966
|
1.0397208
|
SdEq4
|
28
|
3
|
2.697192
|
0.4904499
|
SdEq5
|
69
|
3
|
2.883265
|
0.8861363
|
SdTu1
|
95
|
2
|
1.999998
|
0.6837549
|
SdTu2
|
8
|
2
|
2.000000
|
0.6615632
|
SdTu3
|
24
|
3
|
2.831357
|
0.5442837
|
SdTu4
|
4
|
2
|
2.000000
|
0.6931472
|
SdTu5
|
2
|
2
|
2.500000
|
0.6931472
|
SdEc1
|
3
|
3
|
4.997970
|
1.0986123
|
SdEc2
|
175
|
7
|
3.314495
|
0.8567530
|
SdEc3
|
185
|
4
|
2.987057
|
0.8413431
|
SdEc4
|
22
|
5
|
4.818182
|
1.2200467
|
SdEc5
|
46
|
8
|
6.286534
|
1.7165982
|
SdTa1
|
38
|
2
|
1.958545
|
0.3364958
|
SdTa2
|
65
|
2
|
1.982179
|
0.4293230
|
SdTa3
|
167
|
5
|
2.845166
|
0.6565421
|
SdTa4
|
1
|
1
|
1.000000
|
0.0000000
|
SdTa5
|
2
|
1
|
1.000000
|
0.0000000
|
SdJm1
|
91
|
3
|
2.763849
|
0.6081338
|
SdJm2
|
21
|
2
|
2.000000
|
0.5982696
|
SdJm3
|
59
|
4
|
3.130517
|
0.7165508
|
SdJm4
|
72
|
2
|
1.999909
|
0.6264500
|
SdJm5
|
16
|
2
|
2.000000
|
0.4825776
|
SdFn1
|
111
|
7
|
5.184630
|
1.4255178
|
SdFn2
|
104
|
8
|
5.702130
|
1.7169811
|
SdFn3
|
49
|
8
|
5.808943
|
1.5315573
|
SdFn4
|
4
|
2
|
2.000000
|
0.5623351
|
SdFn5
|
10
|
3
|
3.389506
|
0.8018186
|
RsFd1
|
76
|
13
|
8.607866
|
2.1646870
|
RsFd2
|
31
|
10
|
8.509630
|
2.0920540
|
RsFd3
|
50
|
10
|
7.423642
|
1.8861403
|
RsFd4
|
85
|
12
|
7.363306
|
1.7505727
|
RsFd5
|
144
|
11
|
5.562843
|
1.4598844
|
SdCJ1
|
2
|
1
|
1.000000
|
0.0000000
|
SdCJ2
|
3
|
2
|
2.333331
|
0.6365142
|
SdCJ3
|
6
|
2
|
2.000000
|
0.4505612
|
SdCJ4
|
0
|
0
|
NA
|
NA
|
SdCJ5
|
1
|
1
|
1.000000
|
0.0000000
|
SdCS1
|
28
|
9
|
7.211640
|
1.6236078
|
SdCS2
|
26
|
4
|
3.946154
|
1.1330848
|
SdCS3
|
36
|
5
|
4.032558
|
1.0536914
|
SdCS4
|
26
|
4
|
3.722074
|
0.8397961
|
SdCS5
|
28
|
5
|
4.623043
|
1.1967007
|
Sw1
|
32
|
11
|
8.197579
|
1.8803036
|
Sw2
|
40
|
8
|
6.038462
|
1.3023528
|
Sw3
|
26
|
11
|
9.698997
|
2.1182723
|
Sw4
|
30
|
12
|
9.118774
|
1.8923784
|
Sw5
|
165
|
9
|
4.855290
|
1.3484927
|
Разнообразие Mesostigmata
div %>%
select(id,
`Abundance` = mst_obs_m,
`Number of species` = mst_obs_qD,
`Rarefied number of species` = mst_d10_qD,
`Shannon index` = mst_iH) %>%
mutate_at(c("Abundance", "Number of species"), function(a){a[is.na(a)] <- 0; a}) %>%
formattable::formattable()
id
|
Abundance
|
Number of species
|
Rarefied number of species
|
Shannon index
|
PbAe1
|
0
|
0
|
NA
|
NA
|
PbAe2
|
0
|
0
|
NA
|
NA
|
PbAe3
|
1
|
1
|
1.000000
|
0.0000000
|
PbAe4
|
0
|
0
|
NA
|
NA
|
PbAe5
|
1
|
1
|
1.000000
|
0.0000000
|
PbDe1
|
2
|
2
|
2.499924
|
0.6931472
|
PbDe2
|
2
|
2
|
2.499924
|
0.6931472
|
PbDe3
|
4
|
1
|
1.000000
|
0.0000000
|
PbDe4
|
28
|
4
|
3.396507
|
1.1163671
|
PbDe5
|
35
|
3
|
1.781513
|
0.3470668
|
PbPo1
|
4
|
3
|
4.233032
|
1.0397208
|
PbPo2
|
2
|
1
|
1.000000
|
0.0000000
|
PbPo3
|
47
|
8
|
4.951391
|
1.7421588
|
PbPo4
|
42
|
3
|
1.662021
|
0.3027839
|
PbPo5
|
10
|
3
|
NA
|
0.6390319
|
PbTu1
|
12
|
5
|
4.651515
|
1.4241299
|
PbTu2
|
21
|
7
|
5.180264
|
1.6569375
|
PbTu3
|
46
|
8
|
3.603983
|
1.2018225
|
PbTu4
|
7
|
5
|
6.393714
|
1.4750763
|
PbTu5
|
19
|
9
|
5.860562
|
1.8224567
|
PbTl1
|
1
|
1
|
1.000000
|
0.0000000
|
PbTl2
|
34
|
8
|
4.910358
|
1.6993617
|
PbTl3
|
11
|
6
|
5.727273
|
1.6726254
|
PbTl4
|
3
|
2
|
2.330729
|
0.6365142
|
PbTl5
|
13
|
4
|
3.538462
|
1.0905995
|
SdJj1
|
21
|
7
|
5.248563
|
1.6993255
|
SdJj2
|
21
|
4
|
3.612413
|
1.2372274
|
SdJj3
|
6
|
3
|
3.616410
|
0.8675632
|
SdJj4
|
5
|
4
|
5.934408
|
1.3321790
|
SdJj5
|
5
|
5
|
8.560568
|
1.6094379
|
SdEq1
|
20
|
6
|
4.772863
|
1.5536520
|
SdEq2
|
6
|
4
|
4.616410
|
1.3296613
|
SdEq3
|
11
|
5
|
4.636364
|
1.1595888
|
SdEq4
|
6
|
5
|
7.113244
|
1.5607104
|
SdEq5
|
11
|
2
|
1.909091
|
0.3046361
|
SdTu1
|
37
|
8
|
4.739365
|
1.6057964
|
SdTu2
|
33
|
6
|
3.843327
|
1.2715071
|
SdTu3
|
26
|
6
|
3.930035
|
1.3446254
|
SdTu4
|
8
|
4
|
4.345679
|
1.2554823
|
SdTu5
|
13
|
5
|
4.500000
|
1.4127446
|
SdEc1
|
13
|
4
|
3.765734
|
1.2658568
|
SdEc2
|
8
|
4
|
4.615234
|
1.0735428
|
SdEc3
|
83
|
12
|
5.340752
|
1.9535878
|
SdEc4
|
17
|
5
|
3.970588
|
1.2033320
|
SdEc5
|
72
|
11
|
5.117188
|
1.8734056
|
SdTa1
|
20
|
7
|
5.147059
|
1.6865700
|
SdTa2
|
14
|
9
|
7.362637
|
2.1065773
|
SdTa3
|
100
|
7
|
3.895717
|
1.4313404
|
SdTa4
|
10
|
5
|
NA
|
1.4184837
|
SdTa5
|
18
|
5
|
3.745098
|
1.0797346
|
SdJm1
|
4
|
4
|
7.150069
|
1.3862944
|
SdJm2
|
7
|
4
|
4.952103
|
1.1537419
|
SdJm3
|
13
|
9
|
7.534965
|
2.0981474
|
SdJm4
|
13
|
1
|
1.000000
|
0.0000000
|
SdJm5
|
5
|
3
|
3.694650
|
0.9502705
|
SdFn1
|
31
|
3
|
2.701965
|
0.9347570
|
SdFn2
|
58
|
12
|
4.801076
|
1.7007024
|
SdFn3
|
19
|
5
|
3.631579
|
1.0435479
|
SdFn4
|
11
|
4
|
3.909091
|
1.2945452
|
SdFn5
|
8
|
7
|
8.399277
|
1.9061547
|
RsFd1
|
23
|
7
|
4.392573
|
1.4288697
|
RsFd2
|
23
|
6
|
3.700883
|
1.1792337
|
RsFd3
|
11
|
5
|
4.727273
|
1.2945452
|
RsFd4
|
20
|
3
|
2.526316
|
0.6390319
|
RsFd5
|
46
|
5
|
2.803375
|
0.9507672
|
SdCJ1
|
2
|
2
|
2.499924
|
0.6931472
|
SdCJ2
|
1
|
1
|
1.000000
|
0.0000000
|
SdCJ3
|
1
|
1
|
1.000000
|
0.0000000
|
SdCJ4
|
2
|
1
|
1.000000
|
0.0000000
|
SdCJ5
|
1
|
1
|
1.000000
|
0.0000000
|
SdCS1
|
2
|
2
|
2.499924
|
0.6931472
|
SdCS2
|
2
|
2
|
2.499924
|
0.6931472
|
SdCS3
|
2
|
1
|
1.000000
|
0.0000000
|
SdCS4
|
7
|
1
|
1.000000
|
0.0000000
|
SdCS5
|
2
|
1
|
1.000000
|
0.0000000
|
Sw1
|
47
|
6
|
4.004445
|
1.4367296
|
Sw2
|
1
|
1
|
1.000000
|
0.0000000
|
Sw3
|
1
|
1
|
1.000000
|
0.0000000
|
Sw4
|
3
|
3
|
4.882945
|
1.0986123
|
Sw5
|
31
|
7
|
4.135700
|
1.3532343
|
Параметры среды
div %>%
select(id, coast, skew, soil, substrate,
`Проективное покрытие, %` = vegetation,
`Доминантные виды растений` = plants.d,) %>%
formattable::formattable()
id
|
coast
|
skew
|
soil
|
substrate
|
Проективное покрытие, %
|
Доминантные виды растений
|
PbAe1
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Aeluropus
|
PbAe2
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Aeluropus
|
PbAe3
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Aeluropus
|
PbAe4
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Aeluropus
|
PbAe5
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Aeluropus
|
PbDe1
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Deschampsia
|
PbDe2
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Deschampsia
|
PbDe3
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Deschampsia
|
PbDe4
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Deschampsia
|
PbDe5
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Deschampsia
|
PbPo1
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Poa
|
PbPo2
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Poa
|
PbPo3
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Poa
|
PbPo4
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Poa
|
PbPo5
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Poa
|
PbTu1
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTu2
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTu3
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTu4
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTu5
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTl1
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTl2
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTl3
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTl4
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
PbTl5
|
pebbly
|
steep
|
sand
|
turf
|
10
|
Typha
|
SdJj1
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Juncus
|
SdJj2
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Juncus
|
SdJj3
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Juncus
|
SdJj4
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Juncus
|
SdJj5
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Juncus
|
SdEq1
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Equisetum
|
SdEq2
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Equisetum
|
SdEq3
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Equisetum
|
SdEq4
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Equisetum
|
SdEq5
|
sandy beach
|
gentle
|
sand
|
turf
|
70
|
Equisetum
|
SdTu1
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Typha
|
SdTu2
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Typha
|
SdTu3
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Typha
|
SdTu4
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Typha
|
SdTu5
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Typha
|
SdEc1
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Elaeagnus
|
SdEc2
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Elaeagnus
|
SdEc3
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Elaeagnus
|
SdEc4
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Elaeagnus
|
SdEc5
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Elaeagnus
|
SdTa1
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Typha
|
SdTa2
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Typha
|
SdTa3
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Typha
|
SdTa4
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Typha
|
SdTa5
|
sandy beach
|
gentle
|
sand
|
turf
|
90
|
Typha
|
SdJm1
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Juncus
|
SdJm2
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Juncus
|
SdJm3
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Juncus
|
SdJm4
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Juncus
|
SdJm5
|
sandy beach
|
gentle
|
sand
|
turf
|
40
|
Juncus
|
SdFn1
|
sandy beach
|
gentle
|
sand
|
turf
|
100
|
Phragmites
|
SdFn2
|
sandy beach
|
gentle
|
sand
|
turf
|
100
|
Phragmites
|
SdFn3
|
sandy beach
|
gentle
|
sand
|
turf
|
100
|
Phragmites
|
SdFn4
|
sandy beach
|
gentle
|
sand
|
turf
|
100
|
Typha
|
SdFn5
|
sandy beach
|
gentle
|
sand
|
turf
|
100
|
Typha
|
RsFd1
|
reeds
|
flat
|
clay
|
turf
|
100
|
Phragmites
|
RsFd2
|
reeds
|
flat
|
clay
|
turf
|
100
|
Phragmites
|
RsFd3
|
reeds
|
flat
|
clay
|
turf
|
100
|
Phragmites
|
RsFd4
|
reeds
|
flat
|
clay
|
turf
|
100
|
Phragmites
|
RsFd5
|
reeds
|
flat
|
clay
|
turf
|
100
|
Phragmites
|
SdCJ1
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCJ2
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCJ3
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCJ4
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCJ5
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCS1
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCS2
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCS3
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCS4
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
SdCS5
|
sandy beach
|
flat
|
sand
|
turf
|
15
|
Convolvulus
|
Sw1
|
sandy beach
|
flat
|
grass remnants
|
debris
|
30
|
no
|
Sw2
|
sandy beach
|
flat
|
grass remnants
|
debris
|
0
|
no
|
Sw3
|
sandy beach
|
flat
|
grass remnants
|
debris
|
0
|
no
|
Sw4
|
sandy beach
|
flat
|
woody debris
|
debris
|
0
|
no
|
Sw5
|
pebbly
|
steep
|
woody debris
|
debris
|
0
|
no
|