Enrichment analysis by top 200 genes of each program
plt_list = list()
for (i in 1:ncol(gep_scores)) {
top_genes = gep_scores %>% arrange(desc(gep_scores[i])) #sort by score a
top = head(rownames(top_genes),200) #take top top_genes_num
res = genes_vec_enrichment(genes = top,background = rownames(gep_scores),homer = T,title =
i,silent = T,return_all = T)
plt_list[[i]] = res$plt
}
gridExtra::grid.arrange(grobs = plt_list)

score expression in all acc cancer cells
# Make metagene names
for (i in 1:ncol(all_metagenes)) {
colnames(all_metagenes)[i] = "metagene." %>% paste0(i)
}
#add each metagene to metadata
for (i in 1:ncol(all_metagenes)) {
metage_metadata = all_metagenes %>% select(i)
all_acc_cancer_cells = AddMetaData(object = all_acc_cancer_cells,metadata = metage_metadata)
}
Note: Using an external vector in selections is ambiguous.
ℹ Use `all_of(i)` instead of `i` to silence this message.
ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
This message is displayed once per session.
FeaturePlot(object = all_acc_cancer_cells,features = colnames(all_metagenes))

print_tab <- function(plt,title) {
cat("### ",title," \n")
print(
plt
)
plot.new()
dev.off()
cat(' \n\n')
}
Program assignment
print_tab(plt = DimPlot(object = all_acc_cancer_cells,group.by = "program.assignment",cols =colors),title = "program.assignment")
program.assignment

print_tab(plt = DimPlot(object = all_acc_cancer_cells,group.by = "patient.ident"),title = "patient.ident")
patient.ident

NA
luminal_over_myo correlation
lumScore_vs_program = FetchData(object = all_acc_cancer_cells,vars = c("lum_over_myo","program.assignment"))
lumScore_vs_program = lumScore_vs_program %>% dplyr::filter(program.assignment %in% c("metagene.1","metagene.2","metagene.4"))
plt = ggboxplot(lumScore_vs_program, x = "program.assignment", y = "lum_over_myo",
palette = "jco",
add = "jitter")+ stat_compare_means(method = "wilcox.test",comparisons = list(c("metagene.1","metagene.2"),c("metagene.2","metagene.4")))
print_tab(plt = FeaturePlot(object = all_acc_cancer_cells,features = "lum_over_myo"),title = "lum_over_myo")
lum_over_myo

print_tab(plt = plt,title = "wilcox")
wilcox

NA
LS0tCnRpdGxlOiAnYHIgcnN0dWRpb2FwaTo6Z2V0U291cmNlRWRpdG9yQ29udGV4dCgpJHBhdGggJT4lIGJhc2VuYW1lKCkgJT4lIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLHJlcGxhY2VtZW50ID0gIiIpYCcgCmF1dGhvcjogIkF2aXNoYWkgV2l6ZWwiCmRhdGU6ICdgciBTeXMuRGF0ZSgpYCcKb3V0cHV0OiAKICBodG1sX25vdGVib29rOiAKICAgIGNvZGVfZm9sZGluZzogaGlkZQogICAgdG9jOiB5ZXMKICAgIHRvY19jb2xsYXBzZTogeWVzCiAgICB0b2NfZmxvYXQ6IAogICAgICBjb2xsYXBzZWQ6IEZBTFNFCi0tLQoKIyMgRW5yaWNobWVudCBhbmFseXNpcyBieSB0b3AgMjAwIGdlbmVzIG9mIGVhY2ggcHJvZ3JhbQpgYGB7ciBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD04LCByZXN1bHRzPSdoaWRlJ30KcGx0X2xpc3QgPSBsaXN0KCkKZm9yIChpIGluIDE6bmNvbChnZXBfc2NvcmVzKSkgewogIHRvcF9nZW5lcyA9IGdlcF9zY29yZXMgICU+JSAgYXJyYW5nZShkZXNjKGdlcF9zY29yZXNbaV0pKSAjc29ydCBieSBzY29yZSBhCiAgdG9wID0gaGVhZChyb3duYW1lcyh0b3BfZ2VuZXMpLDIwMCkgI3Rha2UgdG9wIHRvcF9nZW5lc19udW0KICByZXMgPSBnZW5lc192ZWNfZW5yaWNobWVudChnZW5lcyA9IHRvcCxiYWNrZ3JvdW5kID0gcm93bmFtZXMoZ2VwX3Njb3JlcyksaG9tZXIgPSBULHRpdGxlID0gCiAgICAgICAgICAgICAgICAgICAgaSxzaWxlbnQgPSBULHJldHVybl9hbGwgPSBUKQogICAKICBwbHRfbGlzdFtbaV1dID0gcmVzJHBsdAp9CmdyaWRFeHRyYTo6Z3JpZC5hcnJhbmdlKGdyb2JzID0gcGx0X2xpc3QpCmBgYAojIyBzY29yZSBleHByZXNzaW9uIGluIGFsbCBhY2MgY2FuY2VyIGNlbGxzCmBgYHtyIGZpZy5oZWlnaHQ9MTAsIGZpZy53aWR0aD0xMH0KIyBNYWtlIG1ldGFnZW5lIG5hbWVzCmZvciAoaSBpbiAxOm5jb2woYWxsX21ldGFnZW5lcykpIHsKICBjb2xuYW1lcyhhbGxfbWV0YWdlbmVzKVtpXSA9ICJtZXRhZ2VuZS4iICU+JSBwYXN0ZTAoaSkKfQoKCiNhZGQgZWFjaCBtZXRhZ2VuZSB0byBtZXRhZGF0YQpmb3IgKGkgaW4gMTpuY29sKGFsbF9tZXRhZ2VuZXMpKSB7CiAgbWV0YWdlX21ldGFkYXRhID0gYWxsX21ldGFnZW5lcyAlPiUgc2VsZWN0KGkpCiAgYWxsX2FjY19jYW5jZXJfY2VsbHMgPSBBZGRNZXRhRGF0YShvYmplY3QgPSBhbGxfYWNjX2NhbmNlcl9jZWxscyxtZXRhZGF0YSA9IG1ldGFnZV9tZXRhZGF0YSkKfQoKRmVhdHVyZVBsb3Qob2JqZWN0ID0gYWxsX2FjY19jYW5jZXJfY2VsbHMsZmVhdHVyZXMgPSBjb2xuYW1lcyhhbGxfbWV0YWdlbmVzKSkKCmBgYAoKYGBge3J9CnByaW50X3RhYiA8LSBmdW5jdGlvbihwbHQsdGl0bGUpIHsKICAgY2F0KCIjIyMgIix0aXRsZSwiIFxuIikKICBwcmludCgKICAgIHBsdAogICAgKQogIHBsb3QubmV3KCkKICBkZXYub2ZmKCkKICBjYXQoJyBcblxuJykKfQpgYGAKCgojIyBQcm9ncmFtIGFzc2lnbm1lbnQgey50YWJzZXR9CgoKYGBge3IgcmVzdWx0cz0nYXNpcyd9CnByaW50X3RhYihwbHQgPSBEaW1QbG90KG9iamVjdCA9IGFsbF9hY2NfY2FuY2VyX2NlbGxzLGdyb3VwLmJ5ID0gInByb2dyYW0uYXNzaWdubWVudCIsY29scyA9Y29sb3JzKSx0aXRsZSA9ICJwcm9ncmFtLmFzc2lnbm1lbnQiKQpwcmludF90YWIocGx0ID0gRGltUGxvdChvYmplY3QgPSBhbGxfYWNjX2NhbmNlcl9jZWxscyxncm91cC5ieSA9ICJwYXRpZW50LmlkZW50IiksdGl0bGUgPSAicGF0aWVudC5pZGVudCIpCgpgYGAKIyMgbHVtaW5hbF9vdmVyX215byBjb3JyZWxhdGlvbiB7LnRhYnNldH0KCmBgYHtyfQpsdW1TY29yZV92c19wcm9ncmFtID0gRmV0Y2hEYXRhKG9iamVjdCA9IGFsbF9hY2NfY2FuY2VyX2NlbGxzLHZhcnMgPSBjKCJsdW1fb3Zlcl9teW8iLCJwcm9ncmFtLmFzc2lnbm1lbnQiKSkKbHVtU2NvcmVfdnNfcHJvZ3JhbSA9IGx1bVNjb3JlX3ZzX3Byb2dyYW0gJT4lIGRwbHlyOjpmaWx0ZXIocHJvZ3JhbS5hc3NpZ25tZW50ICVpbiUgYygibWV0YWdlbmUuMSIsIm1ldGFnZW5lLjIiLCJtZXRhZ2VuZS40IikpCnBsdCA9IGdnYm94cGxvdChsdW1TY29yZV92c19wcm9ncmFtLCB4ID0gInByb2dyYW0uYXNzaWdubWVudCIsIHkgPSAibHVtX292ZXJfbXlvIiwKICAgICAgICAgIHBhbGV0dGUgPSAiamNvIiwKICAgICAgICAgIGFkZCA9ICJqaXR0ZXIiKSsgc3RhdF9jb21wYXJlX21lYW5zKG1ldGhvZCA9ICJ3aWxjb3gudGVzdCIsY29tcGFyaXNvbnMgPSBsaXN0KGMoIm1ldGFnZW5lLjEiLCJtZXRhZ2VuZS4yIiksYygibWV0YWdlbmUuMiIsIm1ldGFnZW5lLjQiKSkpCmBgYAoKYGBge3IgcmVzdWx0cz0nYXNpcyd9CnByaW50X3RhYihwbHQgPSBGZWF0dXJlUGxvdChvYmplY3QgPSBhbGxfYWNjX2NhbmNlcl9jZWxscyxmZWF0dXJlcyA9ICJsdW1fb3Zlcl9teW8iKSx0aXRsZSA9ICJsdW1fb3Zlcl9teW8iKQpwcmludF90YWIocGx0ID0gcGx0LHRpdGxlID0gIndpbGNveCIpCmBgYAoK