Using var.test() to test equality of variance

\[ H_0: \sigma^2_1 / \sigma^2_2 = 1 \] \[ H_1: \sigma^2_1 / \sigma^2_2 \neq 1 \]

x <- c(14,13,16,20,12,18,11,09,13,11)
y <- c(15,13,18,20,10,17,23,11,10)

You would be required to compute the test statistic for this procedure. The test statistic is the ratio of the variances for both data sets. \[ TS = \frac{s^2_x}{s^2_y} \]

The standard deviations would be provided in the following R code.

sd(x); sd(y)
## [1] 3.40098
## [1] 4.630815

To compute the test statistic. \[ TS = \frac{3.40^2}{4.63^2} = \frac{11.56}{21.43} = 0.5394 \]

Implement the F-Test for Variance

var.test(x,y)
## 
##  F test to compare two variances
## 
## data:  x and y
## F = 0.53938, num df = 9, denom df = 8, p-value = 0.3764
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.1237892 2.2125056
## sample estimates:
## ratio of variances 
##          0.5393782