library(nycflights13)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.8     ✔ dplyr   1.1.0
## ✔ tidyr   1.2.1     ✔ stringr 1.4.1
## ✔ readr   2.1.2     ✔ forcats 0.5.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(dplyr)
flight <- flights

1.Carga en memoria el data frame flights y muestra su contenido.

print(flight)
## # A tibble: 336,776 × 19
##     year month   day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##    <int> <int> <int>    <int>      <int>   <dbl>   <int>   <int>   <dbl> <chr>  
##  1  2013     1     1      517        515       2     830     819      11 UA     
##  2  2013     1     1      533        529       4     850     830      20 UA     
##  3  2013     1     1      542        540       2     923     850      33 AA     
##  4  2013     1     1      544        545      -1    1004    1022     -18 B6     
##  5  2013     1     1      554        600      -6     812     837     -25 DL     
##  6  2013     1     1      554        558      -4     740     728      12 UA     
##  7  2013     1     1      555        600      -5     913     854      19 B6     
##  8  2013     1     1      557        600      -3     709     723     -14 EV     
##  9  2013     1     1      557        600      -3     838     846      -8 B6     
## 10  2013     1     1      558        600      -2     753     745       8 AA     
## # … with 336,766 more rows, 9 more variables: flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>, and abbreviated variable names
## #   ¹​sched_dep_time, ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay

2. Consulta la estructura de flights

¿Cuáles son los campos y sus tipos de datos? Identifica los diferentes tipos de datos y explica en qué consiste cada uno de ellos y cuál es la diferencia entre uno y otro, incluyendo los siguientes tipos de datos: int, dbl, chr, dttm.

str(flight)
## tibble [336,776 × 19] (S3: tbl_df/tbl/data.frame)
##  $ year          : int [1:336776] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
##  $ month         : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
##  $ day           : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
##  $ dep_time      : int [1:336776] 517 533 542 544 554 554 555 557 557 558 ...
##  $ sched_dep_time: int [1:336776] 515 529 540 545 600 558 600 600 600 600 ...
##  $ dep_delay     : num [1:336776] 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
##  $ arr_time      : int [1:336776] 830 850 923 1004 812 740 913 709 838 753 ...
##  $ sched_arr_time: int [1:336776] 819 830 850 1022 837 728 854 723 846 745 ...
##  $ arr_delay     : num [1:336776] 11 20 33 -18 -25 12 19 -14 -8 8 ...
##  $ carrier       : chr [1:336776] "UA" "UA" "AA" "B6" ...
##  $ flight        : int [1:336776] 1545 1714 1141 725 461 1696 507 5708 79 301 ...
##  $ tailnum       : chr [1:336776] "N14228" "N24211" "N619AA" "N804JB" ...
##  $ origin        : chr [1:336776] "EWR" "LGA" "JFK" "JFK" ...
##  $ dest          : chr [1:336776] "IAH" "IAH" "MIA" "BQN" ...
##  $ air_time      : num [1:336776] 227 227 160 183 116 150 158 53 140 138 ...
##  $ distance      : num [1:336776] 1400 1416 1089 1576 762 ...
##  $ hour          : num [1:336776] 5 5 5 5 6 5 6 6 6 6 ...
##  $ minute        : num [1:336776] 15 29 40 45 0 58 0 0 0 0 ...
##  $ time_hour     : POSIXct[1:336776], format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ...
En el dataframe ‘Flights’ existen los siguientes tipos de datos: int, num, chr, POSIXct.
INT: Representa números enteros.
NUM: Representa números decimales y es sinonimo de ‘dbl’.
CHR: Representa a textos y no puede ser utilizado para operaciones matemáticas.
POSIXct: Es el formato de fecha y hora, también es sinonimo de ‘dttm’.

3.¿Cuál es la clase de flights? y ¿Qué significa?

class(flight)
## [1] "tbl_df"     "tbl"        "data.frame"
La función class() determina que tipo de dato es el objeto que se le indique. En el caso de ‘flight’ determina que es una tabla (dataframe).

4.¿Cuántas variables (columnas) tiene?

ncol(flight)
## [1] 19
Flights tiene 19 columnas.

5.¿Cuántas observaciones (registros) tiene la base de datos?

nrow(flight)
## [1] 336776
La base de datos tiene 336,776 renglones (registros).

6. ¿Cuál es la dimensión de flights?

dim(flight)
## [1] 336776     19
La dimensión de la base de datos es de 19 columnas con 336,776 columnas.

7. Consulta el data frame flights

#View(flight)

8. Genera un output del data frame flights. Utiliza las funciones head y tail, ¿Cuántos renglones muestran por defecto cada función?

head(flight)
## # A tibble: 6 × 19
##    year month   day dep_time sched_dep…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##   <int> <int> <int>    <int>       <int>   <dbl>   <int>   <int>   <dbl> <chr>  
## 1  2013     1     1      517         515       2     830     819      11 UA     
## 2  2013     1     1      533         529       4     850     830      20 UA     
## 3  2013     1     1      542         540       2     923     850      33 AA     
## 4  2013     1     1      544         545      -1    1004    1022     -18 B6     
## 5  2013     1     1      554         600      -6     812     837     -25 DL     
## 6  2013     1     1      554         558      -4     740     728      12 UA     
## # … with 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
## #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## #   time_hour <dttm>, and abbreviated variable names ¹​sched_dep_time,
## #   ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay
tail(flight)
## # A tibble: 6 × 19
##    year month   day dep_time sched_dep…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##   <int> <int> <int>    <int>       <int>   <dbl>   <int>   <int>   <dbl> <chr>  
## 1  2013     9    30       NA        1842      NA      NA    2019      NA EV     
## 2  2013     9    30       NA        1455      NA      NA    1634      NA 9E     
## 3  2013     9    30       NA        2200      NA      NA    2312      NA 9E     
## 4  2013     9    30       NA        1210      NA      NA    1330      NA MQ     
## 5  2013     9    30       NA        1159      NA      NA    1344      NA MQ     
## 6  2013     9    30       NA         840      NA      NA    1020      NA MQ     
## # … with 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
## #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## #   time_hour <dttm>, and abbreviated variable names ¹​sched_dep_time,
## #   ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay
Por defalut se muestran 6 renglones con cada función.

9. Ahora muestra los primeros 50 registros y los últimos 20, ¿Cómo lo harías?

head(flight, n=50)
## # A tibble: 50 × 19
##     year month   day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##    <int> <int> <int>    <int>      <int>   <dbl>   <int>   <int>   <dbl> <chr>  
##  1  2013     1     1      517        515       2     830     819      11 UA     
##  2  2013     1     1      533        529       4     850     830      20 UA     
##  3  2013     1     1      542        540       2     923     850      33 AA     
##  4  2013     1     1      544        545      -1    1004    1022     -18 B6     
##  5  2013     1     1      554        600      -6     812     837     -25 DL     
##  6  2013     1     1      554        558      -4     740     728      12 UA     
##  7  2013     1     1      555        600      -5     913     854      19 B6     
##  8  2013     1     1      557        600      -3     709     723     -14 EV     
##  9  2013     1     1      557        600      -3     838     846      -8 B6     
## 10  2013     1     1      558        600      -2     753     745       8 AA     
## # … with 40 more rows, 9 more variables: flight <int>, tailnum <chr>,
## #   origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>,
## #   minute <dbl>, time_hour <dttm>, and abbreviated variable names
## #   ¹​sched_dep_time, ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay
tail(flight, n=20)
## # A tibble: 20 × 19
##     year month   day dep_time sched_de…¹ dep_d…² arr_t…³ sched…⁴ arr_d…⁵ carrier
##    <int> <int> <int>    <int>      <int>   <dbl>   <int>   <int>   <dbl> <chr>  
##  1  2013     9    30     2150       2159      -9    2250    2306     -16 EV     
##  2  2013     9    30     2159       1845     194    2344    2030     194 9E     
##  3  2013     9    30     2203       2205      -2    2339    2331       8 EV     
##  4  2013     9    30     2207       2140      27    2257    2250       7 MQ     
##  5  2013     9    30     2211       2059      72    2339    2242      57 EV     
##  6  2013     9    30     2231       2245     -14    2335    2356     -21 B6     
##  7  2013     9    30     2233       2113      80     112      30      42 UA     
##  8  2013     9    30     2235       2001     154      59    2249     130 B6     
##  9  2013     9    30     2237       2245      -8    2345    2353      -8 B6     
## 10  2013     9    30     2240       2245      -5    2334    2351     -17 B6     
## 11  2013     9    30     2240       2250     -10    2347       7     -20 B6     
## 12  2013     9    30     2241       2246      -5    2345       1     -16 B6     
## 13  2013     9    30     2307       2255      12    2359    2358       1 B6     
## 14  2013     9    30     2349       2359     -10     325     350     -25 B6     
## 15  2013     9    30       NA       1842      NA      NA    2019      NA EV     
## 16  2013     9    30       NA       1455      NA      NA    1634      NA 9E     
## 17  2013     9    30       NA       2200      NA      NA    2312      NA 9E     
## 18  2013     9    30       NA       1210      NA      NA    1330      NA MQ     
## 19  2013     9    30       NA       1159      NA      NA    1344      NA MQ     
## 20  2013     9    30       NA        840      NA      NA    1020      NA MQ     
## # … with 9 more variables: flight <int>, tailnum <chr>, origin <chr>,
## #   dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
## #   time_hour <dttm>, and abbreviated variable names ¹​sched_dep_time,
## #   ²​dep_delay, ³​arr_time, ⁴​sched_arr_time, ⁵​arr_delay

10. Encuentra los resultados descriptivos de las variables del data frame flights.

summary(flight)
##       year          month             day           dep_time    sched_dep_time
##  Min.   :2013   Min.   : 1.000   Min.   : 1.00   Min.   :   1   Min.   : 106  
##  1st Qu.:2013   1st Qu.: 4.000   1st Qu.: 8.00   1st Qu.: 907   1st Qu.: 906  
##  Median :2013   Median : 7.000   Median :16.00   Median :1401   Median :1359  
##  Mean   :2013   Mean   : 6.549   Mean   :15.71   Mean   :1349   Mean   :1344  
##  3rd Qu.:2013   3rd Qu.:10.000   3rd Qu.:23.00   3rd Qu.:1744   3rd Qu.:1729  
##  Max.   :2013   Max.   :12.000   Max.   :31.00   Max.   :2400   Max.   :2359  
##                                                  NA's   :8255                 
##    dep_delay          arr_time    sched_arr_time   arr_delay       
##  Min.   : -43.00   Min.   :   1   Min.   :   1   Min.   : -86.000  
##  1st Qu.:  -5.00   1st Qu.:1104   1st Qu.:1124   1st Qu.: -17.000  
##  Median :  -2.00   Median :1535   Median :1556   Median :  -5.000  
##  Mean   :  12.64   Mean   :1502   Mean   :1536   Mean   :   6.895  
##  3rd Qu.:  11.00   3rd Qu.:1940   3rd Qu.:1945   3rd Qu.:  14.000  
##  Max.   :1301.00   Max.   :2400   Max.   :2359   Max.   :1272.000  
##  NA's   :8255      NA's   :8713                  NA's   :9430      
##    carrier              flight       tailnum             origin         
##  Length:336776      Min.   :   1   Length:336776      Length:336776     
##  Class :character   1st Qu.: 553   Class :character   Class :character  
##  Mode  :character   Median :1496   Mode  :character   Mode  :character  
##                     Mean   :1972                                        
##                     3rd Qu.:3465                                        
##                     Max.   :8500                                        
##                                                                         
##      dest              air_time        distance         hour      
##  Length:336776      Min.   : 20.0   Min.   :  17   Min.   : 1.00  
##  Class :character   1st Qu.: 82.0   1st Qu.: 502   1st Qu.: 9.00  
##  Mode  :character   Median :129.0   Median : 872   Median :13.00  
##                     Mean   :150.7   Mean   :1040   Mean   :13.18  
##                     3rd Qu.:192.0   3rd Qu.:1389   3rd Qu.:17.00  
##                     Max.   :695.0   Max.   :4983   Max.   :23.00  
##                     NA's   :9430                                  
##      minute        time_hour                     
##  Min.   : 0.00   Min.   :2013-01-01 05:00:00.00  
##  1st Qu.: 8.00   1st Qu.:2013-04-04 13:00:00.00  
##  Median :29.00   Median :2013-07-03 10:00:00.00  
##  Mean   :26.23   Mean   :2013-07-03 05:22:54.64  
##  3rd Qu.:44.00   3rd Qu.:2013-10-01 07:00:00.00  
##  Max.   :59.00   Max.   :2013-12-31 23:00:00.00  
##