Statistics for Demographic Data II

Author

Jacob Souch

Initialize

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0      ✔ purrr   1.0.1 
✔ tibble  3.1.8      ✔ dplyr   1.0.10
✔ tidyr   1.3.0      ✔ stringr 1.5.0 
✔ readr   2.1.3      ✔ forcats 0.5.2 
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(haven)
library(gtsummary)
library(gt)
library(ggplot2)
library(scales)

Attaching package: 'scales'

The following object is masked from 'package:purrr':

    discard

The following object is masked from 'package:readr':

    col_factor
library(purrr)
library(haven)
library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

    chisq.test, fisher.test
library(viridis)
Loading required package: viridisLite

Attaching package: 'viridis'

The following object is masked from 'package:scales':

    viridis_pal
library(usmap)
library(ggthemes)
library(tigris)
To enable caching of data, set `options(tigris_use_cache = TRUE)`
in your R script or .Rprofile.
setwd("C:/Users/jacob/OneDrive - University of Texas at San Antonio/Courses/Stats for Demographic Data 2/Homework 4")

Import Data

tibble [438,693 × 303] (S3: tbl_df/tbl/data.frame)
 $ _STATE  : num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "STATE FIPS CODE"
 $ FMONTH  : num [1:438693] 1 1 1 1 1 1 1 1 2 2 ...
  ..- attr(*, "label")= chr "FILE MONTH"
 $ IDATE   : chr [1:438693] "01192021" "01212021" "01212021" "01172021" ...
  ..- attr(*, "label")= chr "INTERVIEW DATE"
 $ IMONTH  : chr [1:438693] "01" "01" "01" "01" ...
  ..- attr(*, "label")= chr "INTERVIEW MONTH"
 $ IDAY    : chr [1:438693] "19" "21" "21" "17" ...
  ..- attr(*, "label")= chr "INTERVIEW DAY"
 $ IYEAR   : chr [1:438693] "2021" "2021" "2021" "2021" ...
  ..- attr(*, "label")= chr "INTERVIEW YEAR"
 $ DISPCODE: num [1:438693] 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 ...
  ..- attr(*, "label")= chr "FINAL DISPOSITION"
 $ SEQNO   : chr [1:438693] "2021000001" "2021000002" "2021000003" "2021000004" ...
  ..- attr(*, "label")= chr "ANNUAL SEQUENCE NUMBER"
 $ _PSU    : num [1:438693] 2.02e+09 2.02e+09 2.02e+09 2.02e+09 2.02e+09 ...
  ..- attr(*, "label")= chr "PRIMARY SAMPLING UNIT"
 $ CTELENM1: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "CORRECT TELEPHONE NUMBER?"
 $ PVTRESD1: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "PRIVATE RESIDENCE?"
 $ COLGHOUS: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DO YOU LIVE IN COLLEGE HOUSING?"
 $ STATERE1: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "RESIDENT OF STATE"
 $ CELPHON1: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "CELLULAR TELEPHONE"
 $ LADULT1 : num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "ARE YOU 18 YEARS OF AGE OR OLDER?"
 $ COLGSEX : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ARE YOU MALE OR FEMALE?"
 $ NUMADULT: num [1:438693] 2 2 2 2 2 1 2 1 1 2 ...
  ..- attr(*, "label")= chr "NUMBER OF ADULTS IN HOUSEHOLD"
 $ LANDSEX : num [1:438693] NA NA NA NA NA 1 NA 1 2 NA ...
  ..- attr(*, "label")= chr "ARE YOU MALE OR FEMALE?"
 $ NUMMEN  : num [1:438693] 1 1 1 1 1 NA 1 NA NA 1 ...
  ..- attr(*, "label")= chr "NUMBER OF ADULT MEN IN HOUSEHOLD"
 $ NUMWOMEN: num [1:438693] 1 1 1 1 1 NA 1 NA NA 1 ...
  ..- attr(*, "label")= chr "NUMBER OF ADULT WOMEN IN HOUSEHOLD"
 $ RESPSLCT: num [1:438693] 2 2 2 2 1 NA 1 NA NA 2 ...
  ..- attr(*, "label")= chr "RESPONDENT SELECTION"
 $ SAFETIME: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "SAFE TIME TO TALK?"
 $ CTELNUM1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "CORRECT PHONE NUMBER?"
 $ CELLFON5: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "IS THIS A CELL PHONE?"
 $ CADULT1 : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ARE YOU 18 YEARS OF AGE OR OLDER?"
 $ CELLSEX : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ARE YOU MALE OR FEMALE?"
 $ PVTRESD3: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DO YOU LIVE IN A PRIVATE RESIDENCE?"
 $ CCLGHOUS: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DO YOU LIVE IN COLLEGE HOUSING?"
 $ CSTATE1 : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DO YOU CURRENTLY LIVE IN  ____(STATE)___"
 $ LANDLINE: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DO YOU ALSO HAVE A LANDLINE TELEPHONE?"
 $ HHADULT : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "NUMBER OF ADULTS IN HOUSEHOLD"
 $ SEXVAR  : num [1:438693] 2 2 2 2 1 1 1 1 2 2 ...
  ..- attr(*, "label")= chr "SEX OF RESPONDENT"
 $ GENHLTH : num [1:438693] 5 3 2 2 5 3 3 4 2 3 ...
  ..- attr(*, "label")= chr "GENERAL HEALTH"
 $ PHYSHLTH: num [1:438693] 20 88 88 88 30 88 30 88 88 25 ...
  ..- attr(*, "label")= chr "NUMBER OF DAYS PHYSICAL HEALTH NOT GOOD"
 $ MENTHLTH: num [1:438693] 10 88 88 10 88 88 88 88 88 5 ...
  ..- attr(*, "label")= chr "NUMBER OF DAYS MENTAL HEALTH NOT GOOD"
 $ POORHLTH: num [1:438693] 88 NA NA 88 30 NA 2 NA NA 5 ...
  ..- attr(*, "label")= chr "POOR PHYSICAL OR MENTAL HEALTH"
 $ PRIMINSR: num [1:438693] 3 1 2 2 3 3 1 2 3 3 ...
  ..- attr(*, "label")= chr "WHAT IS PRIMARY SOURCE OF HEALTH INSURAN"
 $ PERSDOC3: num [1:438693] 1 2 2 1 1 1 1 1 1 2 ...
  ..- attr(*, "label")= chr "HAVE PERSONAL HEALTH CARE PROVIDER?"
 $ MEDCOST1: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "COULD NOT AFFORD TO SEE DOCTOR"
 $ CHECKUP1: num [1:438693] 2 1 1 1 1 1 1 1 2 1 ...
  ..- attr(*, "label")= chr "LENGTH OF TIME SINCE LAST ROUTINE CHECKU"
 $ EXERANY2: num [1:438693] 2 1 2 1 1 2 2 1 2 1 ...
  ..- attr(*, "label")= chr "EXERCISE IN PAST 30 DAYS"
 $ BPHIGH6 : num [1:438693] 3 1 1 1 4 3 1 1 3 1 ...
  ..- attr(*, "label")= chr "EVER TOLD BLOOD PRESSURE HIGH"
 $ BPMEDS  : num [1:438693] NA 1 1 1 NA NA 1 1 NA 1 ...
  ..- attr(*, "label")= chr "CURRENTLY TAKING BLOOD PRESSURE MEDICATI"
 $ CHOLCHK3: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "HOW LONG SINCE CHOLESTEROL CHECKED"
 $ TOLDHI3 : num [1:438693] 1 1 2 1 1 2 2 1 2 2 ...
  ..- attr(*, "label")= chr "EVER TOLD CHOLESTEROL IS HIGH"
 $ CHOLMED3: num [1:438693] 1 1 2 2 1 2 2 1 2 1 ...
  ..- attr(*, "label")= chr "CURRENTLY TAKING MEDICINE FOR HIGH CHOLE"
 $ CVDINFR4: num [1:438693] 2 2 2 2 1 2 2 1 2 2 ...
  ..- attr(*, "label")= chr "EVER DIAGNOSED WITH HEART ATTACK"
 $ CVDCRHD4: num [1:438693] 2 1 1 2 7 2 2 1 2 2 ...
  ..- attr(*, "label")= chr "EVER DIAGNOSED WITH ANGINA OR CORONARY H"
 $ CVDSTRK3: num [1:438693] 2 2 2 2 1 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "EVER DIAGNOSED WITH A STROKE"
 $ ASTHMA3 : num [1:438693] 1 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "EVER TOLD HAD ASTHMA"
 $ ASTHNOW : num [1:438693] 1 NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "STILL HAVE ASTHMA"
 $ CHCSCNCR: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "(EVER TOLD) YOU HAD SKIN CANCER?"
 $ CHCOCNCR: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "(EVER TOLD) YOU HAD ANY OTHER TYPES OF C"
 $ CHCCOPD3: num [1:438693] 1 2 2 2 2 1 2 1 2 2 ...
  ..- attr(*, "label")= chr "EVER TOLD YOU HAD C.O.P.D. EMPHYSEMA OR"
 $ ADDEPEV3: num [1:438693] 2 2 2 2 2 2 1 2 2 2 ...
  ..- attr(*, "label")= chr "(EVER TOLD) YOU HAD A DEPRESSIVE DISORDE"
 $ CHCKDNY2: num [1:438693] 2 1 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "EVER TOLD YOU HAVE KIDNEY DISEASE?"
 $ DIABETE4: num [1:438693] 3 1 1 1 1 3 3 3 3 3 ...
  ..- attr(*, "label")= chr "(EVER TOLD) YOU HAD DIABETES"
 $ DIABAGE3: num [1:438693] NA 98 98 56 65 NA NA NA NA NA ...
  ..- attr(*, "label")= chr "AGE WHEN TOLD DIABETES"
 $ HAVARTH5: num [1:438693] 1 1 2 2 2 2 1 1 2 1 ...
  ..- attr(*, "label")= chr "TOLD HAVE ARTHRITIS"
 $ ARTHEXER: num [1:438693] 2 1 NA NA NA NA 1 2 NA 1 ...
  ..- attr(*, "label")= chr "DR. SUGGEST USE OF PHYSICAL ACTIVITY OR"
 $ ARTHEDU : num [1:438693] 2 2 NA NA NA NA 2 2 NA 2 ...
  ..- attr(*, "label")= chr "EVER TAKEN CLASS IN MANAGING ARTHRITIS O"
 $ LMTJOIN3: num [1:438693] 2 1 NA NA NA NA 1 2 NA 2 ...
  ..- attr(*, "label")= chr "LIMITED BECAUSE OF JOINT SYMPTOMS"
 $ ARTHDIS2: num [1:438693] 1 1 NA NA NA NA 2 2 NA 2 ...
  ..- attr(*, "label")= chr "DOES ARTHRITIS AFFECT WHETHER YOU WORK"
 $ JOINPAI2: num [1:438693] 8 10 NA NA NA NA 8 8 NA 4 ...
  ..- attr(*, "label")= chr "HOW BAD WAS JOINT PAIN"
 $ MARITAL : num [1:438693] 1 9 3 1 1 1 1 2 2 1 ...
  ..- attr(*, "label")= chr "MARITAL STATUS"
 $ EDUCA   : num [1:438693] 4 6 4 4 3 5 6 3 3 4 ...
  ..- attr(*, "label")= chr "EDUCATION LEVEL"
 $ RENTHOM1: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "OWN OR RENT HOME"
 $ NUMHHOL3: num [1:438693] 1 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "HOUSEHOLD TELEPHONES"
 $ NUMPHON3: num [1:438693] 1 NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "RESIDENTIAL PHONES"
 $ CPDEMO1B: num [1:438693] 1 1 1 1 8 1 2 8 1 2 ...
  ..- attr(*, "label")= chr "DO YOU HAVE A CELL PHONE FOR PERSONAL US"
 $ VETERAN3: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "ARE YOU A VETERAN"
 $ EMPLOY1 : num [1:438693] 7 8 7 7 8 7 8 2 7 7 ...
  ..- attr(*, "label")= chr "EMPLOYMENT STATUS"
 $ CHILDREN: num [1:438693] 88 88 88 88 88 88 88 88 88 88 ...
  ..- attr(*, "label")= chr "NUMBER OF CHILDREN IN HOUSEHOLD"
 $ INCOME3 : num [1:438693] 5 77 3 7 4 6 77 99 77 8 ...
  ..- attr(*, "label")= chr "INCOME LEVEL"
 $ PREGNANT: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "PREGNANCY STATUS"
 $ WEIGHT2 : num [1:438693] 72 7777 170 195 206 ...
  ..- attr(*, "label")= chr "REPORTED WEIGHT IN POUNDS"
 $ HEIGHT3 : num [1:438693] 411 506 505 504 511 603 600 509 503 505 ...
  ..- attr(*, "label")= chr "REPORTED HEIGHT IN FEET AND INCHES"
 $ DEAF    : num [1:438693] 2 2 2 2 1 2 1 2 2 2 ...
  ..- attr(*, "label")= chr "ARE YOU DEAF OR DO YOU HAVE SERIOUS DIFF"
 $ BLIND   : num [1:438693] 2 1 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "BLIND OR DIFFICULTY SEEING"
 $ DECIDE  : num [1:438693] 2 1 2 2 2 2 2 1 2 2 ...
  ..- attr(*, "label")= chr "DIFFICULTY CONCENTRATING OR REMEMBERING"
 $ DIFFWALK: num [1:438693] 2 1 2 2 1 1 1 2 2 1 ...
  ..- attr(*, "label")= chr "DIFFICULTY WALKING OR CLIMBING STAIRS"
 $ DIFFDRES: num [1:438693] 2 2 2 2 2 2 1 2 2 2 ...
  ..- attr(*, "label")= chr "DIFFICULTY DRESSING OR BATHING"
 $ DIFFALON: num [1:438693] 1 1 2 2 2 2 1 2 1 2 ...
  ..- attr(*, "label")= chr "DIFFICULTY DOING ERRANDS ALONE"
 $ SMOKE100: num [1:438693] 1 2 2 2 2 1 2 1 2 1 ...
  ..- attr(*, "label")= chr "SMOKED AT LEAST 100 CIGARETTES"
 $ SMOKDAY2: num [1:438693] 3 NA NA NA NA 3 NA 3 NA 3 ...
  ..- attr(*, "label")= chr "FREQUENCY OF DAYS NOW SMOKING"
 $ USENOW3 : num [1:438693] 3 3 3 3 2 2 3 3 3 3 ...
  ..- attr(*, "label")= chr "USE OF SMOKELESS TOBACCO PRODUCTS"
 $ ECIGNOW1: num [1:438693] 3 3 3 3 3 3 3 3 3 3 ...
  ..- attr(*, "label")= chr "DO YOU NOW USE E-CIGARETTES, EVERY DAY,"
 $ ALCDAY5 : num [1:438693] 888 888 888 101 888 888 888 888 888 203 ...
  ..- attr(*, "label")= chr "DAYS IN PAST 30 HAD ALCOHOLIC BEVERAGE"
 $ AVEDRNK3: num [1:438693] NA NA NA 3 NA NA NA NA NA 2 ...
  ..- attr(*, "label")= chr "AVG ALCOHOLIC DRINKS PER DAY IN PAST 30"
 $ DRNK3GE5: num [1:438693] NA NA NA 1 NA NA NA NA NA 88 ...
  ..- attr(*, "label")= chr "BINGE DRINKING"
 $ MAXDRNKS: num [1:438693] NA NA NA 6 NA NA NA NA NA 2 ...
  ..- attr(*, "label")= chr "MOST DRINKS ON SINGLE OCCASION PAST 30 D"
 $ FLUSHOT7: num [1:438693] 1 2 2 1 1 1 1 1 1 2 ...
  ..- attr(*, "label")= chr "ADULT FLU SHOT/SPRAY PAST 12 MOS"
 $ FLSHTMY3: num [1:438693] 92020 NA NA 102020 92020 ...
  ..- attr(*, "label")= chr "WHEN RECEIVED MOST RECENT SEASONAL FLU S"
 $ IMFVPLA2: num [1:438693] 1 NA NA 1 1 5 1 1 1 NA ...
  ..- attr(*, "label")= chr "WHERE DID YOU GET YOUR LAST FLU SHOT/VAC"
 $ PNEUVAC4: num [1:438693] 1 2 2 2 1 1 2 1 2 1 ...
  ..- attr(*, "label")= chr "PNEUMONIA SHOT EVER"
 $ HIVTST7 : num [1:438693] 2 2 2 2 1 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "EVER TESTED H.I.V."
 $ HIVTSTD3: num [1:438693] NA NA NA NA 777777 ...
  ..- attr(*, "label")= chr "MONTH AND YEAR OF LAST HIV TEST"
 $ FRUIT2  : num [1:438693] 101 101 101 203 101 202 312 204 202 101 ...
  ..- attr(*, "label")= chr "HOW MANY TIMES DID YOU EAT FRUIT?"
 $ FRUITJU2: num [1:438693] 555 555 555 205 555 555 301 555 101 555 ...
  ..- attr(*, "label")= chr "HOW MANY TIMES DID YOU DRINK 100 PERCENT"
 $ FVGREEN1: num [1:438693] 204 201 555 303 101 201 203 202 555 202 ...
  ..- attr(*, "label")= chr "HOW MANY TIMES DID YOU EAT DARK GREEN VE"
 $ FRENCHF1: num [1:438693] 203 555 201 204 202 555 203 555 777 202 ...
  ..- attr(*, "label")= chr "HOW OFTEN DO YOU EAT FRENCH FRIES OR FRI"
 $ POTATOE1: num [1:438693] 201 201 201 308 202 201 302 204 555 203 ...
  ..- attr(*, "label")= chr "HOW OFTEN DO YOU EAT FRENCH FRIES OR FRI"
 $ VEGETAB2: num [1:438693] 101 207 203 205 101 201 202 204 202 204 ...
  ..- attr(*, "label")= chr "HOW OFTEN DO YOU EAT FRENCH FRIES OR FRI"
 $ PDIABTST: num [1:438693] 2 NA NA NA NA 2 1 1 1 1 ...
  ..- attr(*, "label")= chr "HAD A TEST FOR HIGH BLOOD SUGAR IN PAST"
 $ PREDIAB1: num [1:438693] 3 NA NA NA NA 3 3 3 3 3 ...
  ..- attr(*, "label")= chr "EVER BEEN TOLD YOU HAVE PRE-DIABETES OR"
 $ INSULIN1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "NOW TAKING INSULIN"
 $ BLDSUGAR: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW OFTEN CHECK BLOOD FOR GLUCOSE"
 $ FEETCHK3: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW OFTEN CHECK FEET FOR SORES OR IRRITA"
 $ DOCTDIAB: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TIMES SEEN HEALTH PROFESSIONAL FOR DIABE"
 $ CHKHEMO3: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TIMES CHECKED FOR GLYCOSYLATED HEMOGLOBI"
 $ FEETCHK : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TIMES FEET CHECK FOR SORES/IRRITATIONS"
 $ EYEEXAM1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "LAST EYE EXAM WHERE PUPILS WERE DILATED"
 $ DIABEYE : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER TOLD DIABETES HAS AFFECTED EYES"
 $ DIABEDU : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER TAKEN CLASS IN MANAGING DIABETES"
 $ TOLDCFS : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TOLD HAD CHRONIC FATIGUE SYNDROME OR MYA"
 $ HAVECFS : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "STILL HAVE CHRONIC FATIGUE SYNDROME OR M"
 $ WORKCFS : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW MANY HOURS A WEEK ARE YOU BEEN ABLE"
 $ TOLDHEPC: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TOLD HAD HEPATITIS C"
 $ TRETHEPC: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TREATED FOR HEPATITIS C"
 $ PRIRHEPC: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WERE YOU TREATED FOR HEPATITIS C PRIOR T"
 $ HAVEHEPC: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "STILL HAVE HEPATITIS C"
 $ HAVEHEPB: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TOLD  HAD HEPATITIS B"
 $ MEDSHEPB: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "CURRENTLY TAKING MEDICINE FOR HEPATITIS"
 $ HPVADVC4: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD AN H.P.V. VACCINATION?"
 $ HPVADSHT: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "NUMBER OF HPV SHOTS RECEIVED"
 $ TETANUS1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "RECEIVED TETANUS SHOT SINCE 2005?"
 $ SHINGLE2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE YOU EVER HAD THE SHINGLES OR ZOSTER"
 $ LCSFIRST: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW OLD WHEN YOU FIRST STARTED SMOKING?"
 $ LCSLAST : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW OLD WHEN YOU LAST SMOKED?"
 $ LCSNUMCG: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ON AVERAGE, HOW MANY CIGARETTES DO YOU S"
 $ LCSCTSCN: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DID YOU HAVE A CT OR CAT SCAN?"
 $ HADMAM  : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE YOU EVER HAD A MAMMOGRAM"
 $ HOWLONG : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW LONG SINCE LAST MAMMOGRAM"
 $ CERVSCRN: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE YOU EVER HAD A CERVICAL CANCER SCRE"
 $ CRVCLCNC: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TIME SINCE LAST CERVICAL CANCER SCREENIN"
 $ CRVCLPAP: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE A PAP TEST AND RECENT CERVICAL CANC"
 $ CRVCLHPV: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE AN H.P.V. TEST AND RECENT CERVICAL"
 $ HADHYST2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAD HYSTERECTOMY"
 $ PSATEST1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD PSA TEST"
 $ PSATIME1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TIME SINCE MOST RECENT PSA TEST"
 $ PCPSARS2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WHAT WAS THE MAIN REASON YOU HAD THIS PS"
 $ PCSTALK : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DID YOU TALK ABOUT THE ADVANTAGES OR DIS"
 $ HADSIGM4: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD SIGMOIDOSCOPY/COLONOSCOPY"
 $ COLNSIGM: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD A COLONOSCOPY, SIGMOIDOSCOPY, O"
 $ COLNTES1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW LONG HAS IT BEEN SINCE YOU HAD COLON"
 $ SIGMTES1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW LONG HAS IT BEEN SINCE YOU HAD SIGMO"
 $ LASTSIG4: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TIME SINCE LAST SIGMOIDOSCOPY/COLONOSCOP"
 $ COLNCNCR: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD ANY OTHER KIND OF TEST FOR COLO"
 $ VIRCOLO1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE YOU EVER HAD A VIRTUAL COLONOSCOPY?"
 $ VCLNTES1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW LONG HAS IT BEEN SINCE YOU HAD VIRTU"
 $ SMALSTOL: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD STOOL TEST?"
 $ STOLTEST: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW LONG SINCE YOU HAD STOOL TEST?"
 $ STOOLDN1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER HAD STOOL DNA TEST?"
 $ BLDSTFIT: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WAS TEST PART OF COLOGUARD TEST?"
 $ SDNATES1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW LONG SINCE YOU HAD STOOL DNA?"
 $ CNCRDIFF: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW MANY TYPES OF CANCER?"
 $ CNCRAGE : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "AGE TOLD HAD CANCER"
 $ CNCRTYP1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TYPE OF CANCER"
 $ CSRVTRT3: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "CURRENTLY RECEIVING TREATMENT FOR CANCER"
 $ CSRVDOC1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WHAT TYPE OF DOCTOR PROVIDES MAJORITY OF"
 $ CSRVSUM : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DID YOU RECEIVE A SUMMARY OF CANCER TREA"
 $ CSRVRTRN: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER RECEIVE INSTRUCTIONS FROM A DOCTOR"
 $ CSRVINST: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "INSTRUCTIONS WRITTEN OR PRINTED"
 $ CSRVINSR: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DID HEALTH INSURANCE PAY FOR ALL OF YOUR"
 $ CSRVDEIN: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "EVER DENIED INSURANCE COVERAGE BECAUSE O"
 $ CSRVCLIN: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "PARTICIPATE IN CLINICAL TRIAL AS PART OF"
 $ CSRVPAIN: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "CURRENTLY HAVE PHYSICAL PAIN FROM CANCER"
 $ CSRVCTL2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "IS PAIN UNDER CONTROL?"
 $ HOMBPCHK: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "TOLD CHECK BLOOD PRESSURE AT HOME"
 $ HOMRGCHK: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "REGULARLY CHECK BLOOD PRESSURE AT HOME"
 $ WHEREBP : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WHERE DO YOU GET BLOOD PRESSURE TAKEN"
 $ SHAREBP : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HOW DO YOU SHARE YOUR BLOOD PRESSURE NUM"
 $ WTCHSALT: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WATCHING SODIUM OR SALT INTAKE"
 $ DRADVISE: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DOCTOR ADVISED REDUCED SODIUM/SALT INTAK"
 $ CIMEMLOS: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE YOU EXPERIENCED CONFUSION OR MEMORY"
 $ CDHOUSE : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "GIVEN UP DAY-TO-DAY CHORES DUE TO CONFUS"
 $ CDASSIST: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "NEED ASSISTANCE WITH DAY-TO_DAY ACTIVITI"
 $ CDHELP  : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WHEN YOU NEED HELP WITH DAY-TO-DAY ACTIV"
 $ CDSOCIAL: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DOES CONFUSION OR MEMORY LOSS INTERFERE"
 $ CDDISCUS: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HAVE YOU DISCUSSED YOUR CONFUSION OR MEM"
 $ CAREGIV1: num [1:438693] 2 2 2 2 2 2 2 2 2 1 ...
  ..- attr(*, "label")= chr "PROVIDED REGULAR CARE FOR FAMILY OR FRIE"
 $ CRGVREL4: num [1:438693] NA NA NA NA NA NA NA NA NA 15 ...
  ..- attr(*, "label")= chr "RELATIONSHIP OF PERSON TO WHOM YOU ARE G"
 $ CRGVLNG1: num [1:438693] NA NA NA NA NA NA NA NA NA 2 ...
  ..- attr(*, "label")= chr "HOW LONG PROVIDED CARE FOR PERSON."
 $ CRGVHRS1: num [1:438693] NA NA NA NA NA NA NA NA NA 1 ...
  ..- attr(*, "label")= chr "HOW MANY HOURS DO YOU PROVIDE CARE FOR P"
 $ CRGVPRB3: num [1:438693] NA NA NA NA NA NA NA NA NA 15 ...
  ..- attr(*, "label")= chr "WHAT IS THE MAJOR HEALTH PROBLEM, ILLNES"
 $ CRGVALZD: num [1:438693] NA NA NA NA NA NA NA NA NA 2 ...
  ..- attr(*, "label")= chr "DOES PERSON BEING CARED FOR HAVE ALZHEIM"
 $ CRGVPER1: num [1:438693] NA NA NA NA NA NA NA NA NA 2 ...
  ..- attr(*, "label")= chr "MANAGED PERSONAL CARE"
 $ CRGVHOU1: num [1:438693] NA NA NA NA NA NA NA NA NA 2 ...
  ..- attr(*, "label")= chr "MANAGED HOUSEHOLD TASKS"
 $ CRGVEXPT: num [1:438693] 2 2 2 7 2 2 2 2 7 NA ...
  ..- attr(*, "label")= chr "DO YOU EXPECT TO HAVE A RELATIVE YOU WIL"
 $ ACEDEPRS: num [1:438693] 2 2 2 1 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "LIVE WITH ANYONE DEPRESSED, MENTALLY ILL"
 $ ACEDRINK: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "LIVE WITH A PROBLEM DRINKER/ALCOHOLIC?"
 $ ACEDRUGS: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "LIVE WITH ANYONE WHO USED ILLEGAL DRUGS"
 $ ACEPRISN: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "LIVE WITH ANYONE WHO SERVED TIME IN PRIS"
 $ ACEDIVRC: num [1:438693] 1 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "WERE YOUR PARENTS DIVORCED/SEPERATED?"
 $ ACEPUNCH: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HOW OFTEN DID YOUR PARENTS BEAT EACH OTH"
 $ ACEHURT1: num [1:438693] 1 1 1 3 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HOW OFTEN DID A PARENT PHYSICALLY HURT Y"
 $ ACESWEAR: num [1:438693] 1 1 1 1 1 1 1 1 1 3 ...
  ..- attr(*, "label")= chr "HOW OFTEN DID A PARENT SWEAR AT YOU?"
 $ ACETOUCH: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HOW OFTEN DID ANYONE EVER TOUCH YOU SEXU"
 $ ACETTHEM: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HOW OFTEN DID ANYONE MAKE YOU TOUCH THEM"
 $ ACEHVSEX: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HOW OFTEN DID ANYONE EVER FORCE YOU TO H"
 $ ACEADSAF: num [1:438693] 5 5 5 5 5 5 5 5 5 4 ...
  ..- attr(*, "label")= chr "DID AN ADULT MAKE YOU FEEL SAFE AND PROT"
 $ ACEADNED: num [1:438693] 3 5 5 5 5 5 5 5 5 4 ...
  ..- attr(*, "label")= chr "DID AN ADULT MAKE SURE BASIC NEEDS WERE"
 $ MARIJAN1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DURING THE PAST 30 DAYS, ON HOW MANY DAY"
 $ USEMRJN3: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DURING THE PAST 30 DAYS, HOW DID YOU PRI"
 $ RSNMRJN2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "WHAT WAS THE REASON YOU USED MARIJUANA?"
 $ LASTSMK2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "INTERVAL SINCE LAST SMOKED"
 $ STOPSMK2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "STOPPED SMOKING IN PAST 12 MONTHS"
 $ FIREARM5: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ANY FIREARMS IN HOME"
 $ GUNLOAD : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ANY FIREARMS LOADED"
 $ LOADULK2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ANY LOADED FIREARMS ALSO UNLOCKED"
 $ RCSGENDR: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "GENDER OF CHILD"
 $ RCSRLTN2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "RELATIONSHIP TO CHILD"
 $ CASTHDX2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "HLTH PRO EVER SAID CHILD HAS ASTHMA"
 $ CASTHNO2: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "CHILD STILL HAVE ASTHMA?"
 $ BIRTHSEX: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "ARE YOU MALE OR FEMALE?"
 $ SOMALE  : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "SEXUAL ORIENTATION"
 $ SOFEMALE: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "SEXUAL ORIENTATION"
 $ TRNSGNDR: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "DO YOU CONSIDER YOURSELF TO BE TRANSGEND"
 $ QSTVER  : num [1:438693] 10 10 10 10 10 10 10 10 10 10 ...
  ..- attr(*, "label")= chr "QUESTIONNAIRE VERSION IDENTIFIER"
 $ QSTLANG : num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "LANGUAGE IDENTIFIER"
 $ _METSTAT: num [1:438693] 1 1 1 1 2 2 2 1 1 1 ...
  ..- attr(*, "label")= chr "METROPOLITAN STATUS"
 $ _URBSTAT: num [1:438693] 1 1 1 1 1 2 1 1 1 1 ...
  ..- attr(*, "label")= chr "URBAN/RURAL STATUS"
 $ MSCODE  : num [1:438693] 1 2 1 3 2 5 5 3 1 1 ...
  ..- attr(*, "label")= chr "METROPOLITAN STATUS CODE"
 $ _STSTR  : num [1:438693] 11011 11011 11011 11011 11011 ...
  ..- attr(*, "label")= chr "SAMPLE DESIGN STRATIFICATION VARIABLE"
 $ _STRWT  : num [1:438693] 39.8 39.8 39.8 39.8 39.8 ...
  ..- attr(*, "label")= chr "STRATUM WEIGHT"
 $ _RAWRAKE: num [1:438693] 2 2 2 2 2 1 2 1 1 2 ...
  ..- attr(*, "label")= chr "RAW WEIGHTING FACTOR USED IN RAKING"
 $ _WT2RAKE: num [1:438693] 79.5 79.5 79.5 79.5 79.5 ...
  ..- attr(*, "label")= chr "DESIGN WEIGHT USED IN RAKING"
 $ _IMPRACE: num [1:438693] 1 2 2 1 6 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "IMPUTED RACE/ETHNICITY VALUE"
 $ _CHISPNC: num [1:438693] 9 9 9 9 9 9 9 9 9 9 ...
  ..- attr(*, "label")= chr "CHILD HISPANIC, LATINO/A, OR SPANISH ORI"
 $ _CRACE1 : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "CHILD NON-HISPANIC RACE INCLUDING MULTIR"
 $ _CPRACE1: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "PREFERRED CHILD RACE CATEGORIES"
 $ CAGEG   : num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "FOUR LEVEL CHILD AGE"
 $ _CLLCPWT: num [1:438693] NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "label")= chr "FINAL CHILD WEIGHT: LAND-LINE AND CELL-P"
 $ _DUALUSE: num [1:438693] 1 1 1 1 9 1 1 9 1 1 ...
  ..- attr(*, "label")= chr "DUAL PHONE USE CATEGORIES"
 $ _DUALCOR: num [1:438693] 0.519 0.519 0.519 0.519 NA ...
  ..- attr(*, "label")= chr "DUAL PHONE USE CORRECTION FACTOR"
 $ _LLCPWT2: num [1:438693] 874 874 874 874 2145 ...
  ..- attr(*, "label")= chr "TRUNCATED DESIGN WEIGHT USED IN ADULT CO"
 $ _LLCPWT : num [1:438693] 745 299 588 1100 1712 ...
  ..- attr(*, "label")= chr "FINAL WEIGHT: LAND-LINE AND CELL-PHONE D"
 $ _RFHLTH : num [1:438693] 2 1 1 1 2 1 1 2 1 1 ...
  ..- attr(*, "label")= chr "ADULTS WITH GOOD OR BETTER HEALTH"
 $ _PHYS14D: num [1:438693] 3 1 1 1 3 1 3 1 1 3 ...
  ..- attr(*, "label")= chr "COMPUTED PHYSICAL HEALTH STATUS"
 $ _MENT14D: num [1:438693] 2 1 1 2 1 1 1 1 1 2 ...
  ..- attr(*, "label")= chr "COMPUTED MENTAL HEALTH STATUS"
 $ _HLTHPLN: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HAVE ANY HEALTH INSURANCE"
 $ _HCVU652: num [1:438693] 9 9 9 1 9 9 1 1 9 9 ...
  ..- attr(*, "label")= chr "RESPONDENTS AGED 18-64 WITH HEALTH INSUR"
 $ _TOTINDA: num [1:438693] 2 1 2 1 1 2 2 1 2 1 ...
  ..- attr(*, "label")= chr "LEISURE TIME PHYSICAL ACTIVITY CALCULATE"
 $ _RFHYPE6: num [1:438693] 1 2 2 2 1 1 2 2 1 2 ...
  ..- attr(*, "label")= chr "HIGH BLOOD PRESSURE CALCULATED VARIABLE"
 $ _CHOLCH3: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "CHOLESTEROL CHECKED CALCULATED VARIABLE"
 $ _RFCHOL3: num [1:438693] 2 2 1 2 2 1 1 2 1 1 ...
  ..- attr(*, "label")= chr "HIGH CHOLESTEROL CALCULATED VARIABLE"
 $ _MICHD  : num [1:438693] 2 1 1 2 1 2 2 1 2 2 ...
  ..- attr(*, "label")= chr "RESPONDENTS THAT HAVE EVER REPORTED HAVI"
 $ _LTASTH1: num [1:438693] 2 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "LIFETIME ASTHMA CALCULATED VARIABLE"
 $ _CASTHM1: num [1:438693] 2 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "CURRENT ASTHMA CALCULATED VARIABLE"
 $ _ASTHMS1: num [1:438693] 1 3 3 3 3 3 3 3 3 3 ...
  ..- attr(*, "label")= chr "COMPUTED ASTHMA STATUS"
 $ _DRDXAR3: num [1:438693] 1 1 2 2 2 2 1 1 2 1 ...
  ..- attr(*, "label")= chr "RESPONDENTS DIAGNOSED WITH ARTHRITIS"
 $ _LMTACT3: num [1:438693] 2 1 3 3 3 3 1 2 3 2 ...
  ..- attr(*, "label")= chr "LIMITED USUAL ACTIVITIES"
 $ _LMTWRK3: num [1:438693] 1 1 3 3 3 3 2 2 3 2 ...
  ..- attr(*, "label")= chr "LIMITED WORK ACTIVITIES"
 $ _PRACE1 : num [1:438693] 1 2 2 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "COMPUTED PREFERRED RACE"
 $ _MRACE1 : num [1:438693] 1 2 2 1 7 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "CALCULATED NON-HISPANIC RACE INCLUDING M"
 $ _HISPANC: num [1:438693] 2 2 2 2 2 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "HISPANIC, LATINO/A, OR SPANISH ORIGIN CA"
 $ _RACE   : num [1:438693] 1 2 2 1 7 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "COMPUTED RACE-ETHNICITY GROUPING"
 $ _RACEG21: num [1:438693] 1 2 2 1 2 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "COMPUTED NON-HISPANIC WHITES/ALL OTHERS"
 $ _RACEGR3: num [1:438693] 1 2 2 1 4 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "COMPUTED FIVE LEVEL RACE/ETHNICITY CATEG"
 $ _RACEPRV: num [1:438693] 1 2 2 1 7 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "COMPUTED RACE GROUPS USED FOR INTERNET P"
 $ _SEX    : num [1:438693] 2 2 2 2 1 1 1 1 2 2 ...
  ..- attr(*, "label")= chr "CALCULATED SEX VARIABLE"
 $ _AGEG5YR: num [1:438693] 11 10 11 9 12 13 9 9 12 10 ...
  ..- attr(*, "label")= chr "REPORTED AGE IN FIVE-YEAR AGE CATEGORIES"
 $ _AGE65YR: num [1:438693] 2 2 2 1 2 2 1 1 2 2 ...
  ..- attr(*, "label")= chr "REPORTED AGE IN TWO AGE GROUPS CALCULATE"
 $ _AGE80  : num [1:438693] 70 67 72 62 76 80 63 62 78 65 ...
  ..- attr(*, "label")= chr "IMPUTED AGE VALUE COLLAPSED ABOVE 80"
 $ _AGE_G  : num [1:438693] 6 6 6 5 6 6 5 5 6 6 ...
  ..- attr(*, "label")= chr "IMPUTED AGE IN SIX GROUPS"
 $ HTIN4   : num [1:438693] 59 66 65 64 71 75 72 69 63 65 ...
  ..- attr(*, "label")= chr "COMPUTED HEIGHT IN INCHES"
 $ HTM4    : num [1:438693] 150 168 165 163 180 191 183 175 160 165 ...
  ..- attr(*, "label")= chr "COMPUTED HEIGHT IN METERS"
 $ WTKG3   : num [1:438693] 3266 NA 7711 8845 9344 ...
  ..- attr(*, "label")= chr "COMPUTED WEIGHT IN KILOGRAMS"
 $ _BMI5   : num [1:438693] 1454 NA 2829 3347 2873 ...
  ..- attr(*, "label")= chr "COMPUTED BODY MASS INDEX"
 $ _BMI5CAT: num [1:438693] 1 NA 3 4 3 2 4 2 NA 4 ...
  ..- attr(*, "label")= chr "COMPUTED BODY MASS INDEX CATEGORIES"
 $ _RFBMI5 : num [1:438693] 1 9 2 2 2 1 2 1 9 2 ...
  ..- attr(*, "label")= chr "OVERWEIGHT OR OBESE CALCULATED VARIABLE"
 $ _CHLDCNT: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "COMPUTED NUMBER OF CHILDREN IN HOUSEHOLD"
 $ _EDUCAG : num [1:438693] 2 4 2 2 1 3 4 1 1 2 ...
  ..- attr(*, "label")= chr "COMPUTED LEVEL OF EDUCATION COMPLETED CA"
 $ _INCOMG1: num [1:438693] 3 9 2 5 2 4 9 9 9 5 ...
  ..- attr(*, "label")= chr "COMPUTED INCOME CATEGORIES"
 $ _SMOKER3: num [1:438693] 3 4 4 4 4 3 4 3 4 3 ...
  ..- attr(*, "label")= chr "COMPUTED SMOKING STATUS"
 $ _RFSMOK3: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "CURRENT SMOKING CALCULATED VARIABLE"
 $ _CURECI1: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "CURRENT E-CIGARETTE USER CALCULATED VARI"
 $ DRNKANY5: num [1:438693] 2 2 2 1 2 2 2 2 2 1 ...
  ..- attr(*, "label")= chr "DRINK ANY ALCOHOLIC BEVERAGES IN PAST 30"
 $ DROCDY3_: num [1:438693] 0 0 0 14 0 0 0 0 0 10 ...
  ..- attr(*, "label")= chr "COMPUTED DRINK-OCCASIONS-PER-DAY"
 $ _RFBING5: num [1:438693] 1 1 1 2 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "BINGE DRINKING CALCULATED VARIABLE"
 $ _DRNKWK1: num [1:438693] 0 0 0 300 0 0 0 0 0 140 ...
  ..- attr(*, "label")= chr "COMPUTED NUMBER OF DRINKS OF ALCOHOL BEV"
 $ _RFDRHV7: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "HEAVY ALCOHOL CONSUMPTION  CALCULATED VA"
 $ _FLSHOT7: num [1:438693] 1 2 2 NA 1 1 NA NA 1 2 ...
  ..- attr(*, "label")= chr "FLU SHOT CALCULATED VARIABLE"
 $ _PNEUMO3: num [1:438693] 1 2 2 NA 1 1 NA NA 2 1 ...
  ..- attr(*, "label")= chr "PNEUMONIA VACCINATION CALCULATED VARIABL"
 $ _AIDTST4: num [1:438693] 2 2 2 2 1 2 2 2 2 2 ...
  ..- attr(*, "label")= chr "EVER BEEN TESTED FOR HIV CALCULATED VARI"
 $ FTJUDA2_: num [1:438693] 0 0 0 71 0 0 3 0 100 0 ...
  ..- attr(*, "label")= chr "COMPUTED FRUIT JUICE INTAKE IN TIMES PER"
 $ FRUTDA2_: num [1:438693] 100 100 100 43 100 29 40 57 29 100 ...
  ..- attr(*, "label")= chr "COMPUTED FRUIT INTAKE IN TIMES PER DAY"
 $ GRENDA1_: num [1:438693] 57 14 0 10 100 14 43 29 0 29 ...
  ..- attr(*, "label")= chr "COMPUTED DARK GREEN VEGETABLE INTAKE IN"
 $ FRNCHDA_: num [1:438693] 43 0 14 57 29 0 43 0 NA 29 ...
  ..- attr(*, "label")= chr "FRENCH FRY INTAKE IN TIMES PER DAY"
 $ POTADA1_: num [1:438693] 14 14 14 27 29 14 7 57 0 43 ...
  ..- attr(*, "label")= chr "COMPUTED POTATO SERVINGS PER DAY"
 $ VEGEDA2_: num [1:438693] 100 100 43 71 100 14 29 57 29 57 ...
  ..- attr(*, "label")= chr "COMPUTED OTHER VEGETABLE INTAKE IN TIMES"
 $ _MISFRT1: num [1:438693] 0 0 0 0 0 0 0 0 0 0 ...
  ..- attr(*, "label")= chr "THE NUMBER OF MISSING FRUIT RESPONSES"
 $ _MISVEG1: num [1:438693] 0 0 0 0 0 0 0 0 1 0 ...
  ..- attr(*, "label")= chr "THE NUMBER OF MISSING VEGETABLE RESPONSE"
 $ _FRTRES1: num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "MISSING ANY FRUIT RESPONSES"
 $ _VEGRES1: num [1:438693] 1 1 1 1 1 1 1 1 0 1 ...
  ..- attr(*, "label")= chr "MISSING ANY VEGETABLE RESPONSES"
 $ _FRUTSU1: num [1:438693] 100 100 100 114 100 29 43 57 129 100 ...
  ..- attr(*, "label")= chr "TOTAL FRUITS CONSUMED PER DAY"
 $ _VEGESU1: num [1:438693] 214 128 71 165 258 42 122 143 NA 158 ...
  ..- attr(*, "label")= chr "TOTAL VEGETABLES CONSUMED PER DAY"
 $ _FRTLT1A: num [1:438693] 1 1 1 1 1 2 2 2 1 1 ...
  ..- attr(*, "label")= chr "CONSUME FRUIT 1 OR MORE TIMES PER DAY"
 $ _VEGLT1A: num [1:438693] 1 1 2 1 1 2 1 1 9 1 ...
  ..- attr(*, "label")= chr "CONSUME VEGETABLES 1 OR MORE TIMES PER D"
 $ _FRT16A : num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "REPORTED CONSUMING FRUIT >16/DAY"
 $ _VEG23A : num [1:438693] 1 1 1 1 1 1 1 1 1 1 ...
  ..- attr(*, "label")= chr "REPORTED CONSUMING VEGETABLES >23/DAY"
 $ _FRUITE1: num [1:438693] 0 0 0 0 0 0 0 0 0 0 ...
  ..- attr(*, "label")= chr "FRUIT EXCLUSION FROM ANALYSES"
 $ _VEGETE1: num [1:438693] 0 0 0 0 0 0 0 0 1 0 ...
  ..- attr(*, "label")= chr "VEGETABLE EXCLUSION FROM ANALYSES"
NULL

Demographics

Sex

tabyl(brfss21$SEX) 
 brfss21$SEX      n   percent
           1 203760 0.4644706
           2 234933 0.5355294

Imputed Race

tabyl(brfss21$IMPRACE)  %>% gt()
brfss21$IMPRACE n percent
1 332222 0.75729952
2 33132 0.07552434
3 11557 0.02634416
4 7410 0.01689108
5 38688 0.08818923
6 15684 0.03575165

Geography

states <- rename(fips_codes, STATE = state_code) %>% select(state, STATE, state_name) %>% unique()


brfss21$MONTH_file <- brfss21$MONTH
Warning: Unknown or uninitialised column: `MONTH`.
brfss21$MONTH_1A <- brfss21$ADULT1
Warning: Unknown or uninitialised column: `ADULT1`.
brfss21$MONTH <-  NULL
brfss21$ADULT1 <- NULL

states$STATE <- as.numeric(states$STATE)


brfss21.c <- left_join(brfss21, states, by = "STATE")
tabyl(brfss21.c$state_name) %>% gt() %>% gt::cols_label(`brfss21.c$state_name`   = "State",n= "n",percent= "%")
State n %
Alabama 4586 0.010453780
Alaska 5493 0.012521285
Arizona 10654 0.024285776
Arkansas 5372 0.012245466
California 6735 0.015352422
Colorado 10476 0.023880025
Connecticut 8341 0.019013296
Delaware 3640 0.008297374
District of Columbia 3198 0.007289836
Georgia 8186 0.018659974
Guam 1658 0.003779408
Hawaii 7787 0.017750454
Idaho 6788 0.015473235
Illinois 3210 0.007317190
Indiana 9929 0.022633140
Iowa 9625 0.021940172
Kansas 17565 0.040039390
Kentucky 5429 0.012375397
Louisiana 5102 0.011630001
Maine 11808 0.026916317
Maryland 15627 0.035621722
Massachusetts 7683 0.017513386
Michigan 9425 0.021484273
Minnesota 15959 0.036378515
Mississippi 4421 0.010077663
Missouri 12266 0.027960328
Montana 6243 0.014230909
Nebraska 14923 0.034016955
Nevada 2739 0.006243546
New Hampshire 6536 0.014898802
New Jersey 7965 0.018156205
New Mexico 6362 0.014502169
New York 39095 0.089116991
North Carolina 4939 0.011258443
North Dakota 5909 0.013469556
Ohio 14308 0.032615063
Oklahoma 5451 0.012425546
Oregon 5378 0.012259142
Pennsylvania 6419 0.014632100
Puerto Rico 4014 0.009149907
Rhode Island 5609 0.012785707
South Carolina 10057 0.022924916
South Dakota 7290 0.016617543
Tennessee 4788 0.010914238
Texas 10815 0.024652775
U.S. Virgin Islands 1382 0.003150267
Utah 10621 0.024210553
Vermont 6580 0.014999100
Virginia 9902 0.022571593
Washington 13142 0.029957168
West Virginia 6744 0.015372937
Wisconsin 6106 0.013918617
Wyoming 4413 0.010059427

Select Respondents by DDEPEV3 and 5YRAGE

DDEPEV3 [Ever told you have depression]

brfss21.c$DDEPEV3 
Warning: Unknown or uninitialised column: `DDEPEV3`.
NULL
brfss21.c <- brfss21.c %>% filter(!(ADDEPEV3 %in% c(7,9, NULL))) 
brfss21.c <-filter(brfss21.c, AGEG5YR != 14)
brfss21.c <- filter(brfss21.c,EDUCAG !=9)


brfss21.c$newagecat<- car::recode(brfss21.c$AGEG5YR, "1=21;2=27;3=32;4=37;5=42;6=47;7=52;8=57;9=62;10=67;11=72;12=77;13=82")

brfss21.c$ADDEPEV3 <- car::recode(brfss21.c$ADDEPEV3, "1=1;2=0")

tabyl(brfss21.c, ADDEPEV3, SEX)
 ADDEPEV3      1      2
        0 169530 171670
        1  28091  56197
tabyl(brfss21.c, ADDEPEV3, state_name) %>% gt()
ADDEPEV3 Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming
0 3562 4299 8521 4093 5566 8102 6457 2955 2492 6452 1468 6725 5204 2578 7368 7859 13948 3968 3778 8922 12405 5888 7106 12303 3490 9265 4857 12457 2179 5045 6255 5054 29809 3784 4863 10974 4114 3891 4954 3315 4162 7929 6018 3462 8358 1215 8034 4883 7729 9808 4939 4783 3555
1 936 983 1861 1113 1051 2042 1579 573 589 1426 164 921 1393 522 2152 1537 3213 1326 1206 2588 2555 1495 1985 3242 837 2655 1232 2227 478 1282 1299 1209 7576 1002 912 2987 1196 1298 1254 650 1260 1755 1066 1198 2145 103 2312 1524 1838 2936 1681 1198 726
tabyl(brfss21.c, RACE, state_name) %>% gt()
RACE Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming
1 3038 3731 7092 4155 3026 7157 5790 2407 1467 4838 198 2557 5632 2148 7589 7924 14522 4391 3403 10671 9407 5317 7224 13028 2596 10276 5096 12892 1812 5789 4036 2931 27517 3052 5127 11979 3844 4172 4703 12 4111 6889 5516 3768 5608 179 8605 5887 7041 9981 6046 5184 3812
2 1155 91 273 560 337 304 542 538 1118 1966 17 88 32 373 755 187 760 533 1053 57 3294 417 869 611 1539 726 18 235 136 28 907 68 2763 889 74 811 278 75 694 4 246 1880 50 469 952 804 79 46 1370 266 184 226 13
3 38 615 492 60 47 81 31 28 12 57 0 19 65 22 61 63 155 40 55 100 82 29 66 165 27 109 486 167 30 31 25 629 267 141 261 83 383 64 25 1 34 76 1060 53 76 10 123 55 53 127 37 165 46
4 38 110 156 32 592 184 252 73 95 129 530 2392 33 151 141 101 193 38 51 35 398 370 183 434 19 101 14 111 82 80 509 57 1028 73 47 146 48 111 189 0 94 66 43 58 291 14 125 32 242 565 33 70 16
5 6 28 23 3 25 22 9 3 5 16 588 708 15 2 6 11 18 10 10 6 24 6 7 18 4 14 6 6 18 2 13 15 59 5 9 16 8 22 6 0 3 8 3 4 15 3 49 3 8 62 4 2 1
6 15 82 67 43 82 95 127 12 51 89 18 21 46 29 125 14 106 20 40 61 158 52 135 56 31 87 37 31 22 74 168 8 732 24 26 71 11 39 37 12 93 111 37 25 102 33 41 77 60 133 15 25 22
7 86 290 192 130 217 199 149 76 79 172 160 1205 108 32 180 97 335 74 85 149 269 105 176 259 18 206 148 160 63 82 116 84 731 76 68 285 282 103 102 0 92 168 111 95 195 31 106 102 185 355 94 75 59
8 82 183 1879 129 2188 1795 961 328 180 450 92 543 494 281 487 813 822 97 174 193 1018 933 256 739 39 247 144 899 420 122 1584 2259 3492 465 92 315 349 436 331 3934 602 318 161 113 2965 203 1019 90 450 974 85 162 199
9 40 152 208 94 103 307 175 63 74 161 29 113 172 62 176 186 250 91 113 238 310 154 175 235 54 154 140 183 74 119 196 212 796 61 71 255 107 167 121 2 147 168 103 75 299 41 199 115 158 281 122 72 113
tabyl(brfss21.c, EDUCA, state_name) %>% gt()
EDUCA Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas U.S. Virgin Islands Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming
1 3 4 20 2 48 27 9 11 1 10 2 6 9 1 12 11 5 20 2 7 27 14 4 15 0 5 4 24 2 5 18 12 60 15 2 4 11 9 5 15 12 14 5 3 49 0 8 1 3 21 3 4 1
2 64 36 226 107 488 245 161 90 37 171 17 34 95 27 155 308 133 151 90 81 243 160 52 126 118 219 60 262 42 42 249 216 873 155 84 135 82 90 65 290 129 189 71 99 474 96 148 51 117 245 116 44 32
3 286 191 393 277 374 439 225 130 99 466 80 161 300 82 412 342 468 278 294 293 546 231 304 369 326 606 189 429 103 164 287 426 1752 273 182 587 263 170 199 243 207 510 240 228 561 90 327 170 296 369 362 157 87
4 1237 1365 2242 1658 1167 2019 1794 904 455 2102 582 1938 1677 695 2829 2929 4273 1727 1365 2966 3548 1382 2369 3225 1272 3792 1558 4240 706 1512 1699 1651 10396 1124 1627 4410 1407 1051 1742 923 1136 2544 2000 1303 2452 444 2459 1503 2067 2537 2323 1665 1125
5 1267 1580 3388 1466 1538 2527 1888 939 408 2056 375 2154 2182 789 2527 2716 5263 1507 1369 3188 3368 1770 2578 4681 1252 3465 1832 4567 870 1626 1735 1718 9664 1285 1896 3900 1657 1714 1478 982 1316 2606 2228 1311 2817 242 3202 1505 2462 3662 1680 1723 1415
6 1641 2106 4113 1696 3002 4887 3959 1454 2081 3073 576 3353 2334 1506 3585 3090 7019 1611 1864 4975 7228 3826 3784 7129 1359 3833 2446 5162 934 2978 3566 2240 14640 1934 1984 4925 1890 2155 2719 1512 2622 3821 2540 1716 4150 446 4202 3177 4622 5910 2136 2388 1621

Chi-Square

chi_data = data.frame(brfss21.c$ADDEPEV3,brfss21.c$SEX)           
chi_data = table(brfss21.c$ADDEPEV3,brfss21.c$SEX)                
print(chi_data) 
   
         1      2
  0 169530 171670
  1  28091  56197
chisq.test(chi_data)

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_data
X-squared = 7271.5, df = 1, p-value < 2.2e-16

Probability of Being Told You Have Depression by Sex and Education Level

ageprobs<- brfss21.c %>% filter(EDUCAG !=9) %>%
    group_by(AGE80, EDUCAG,SEXVAR) %>%
    summarize(p=mean(ADDEPEV3),n=n())
`summarise()` has grouped output by 'AGE80', 'EDUCAG'. You can override using
the `.groups` argument.
ageprobs$num <- ageprobs$p*(1-ageprobs$p)

ageprobs$sep <- sqrt(ageprobs$num/ageprobs$n)

ageprobs$me <- 2*ageprobs$sep
  
ggplot(data =ageprobs, aes(x = AGE80, y = p, ymin=p-me, ymax=p+me, group= EDUCAG)) +
     geom_line(aes(color =  factor(EDUCAG))) + ylim(0,1) + geom_ribbon(alpha=0.03,aes()) +
labs(title="Mental Health by Age and Education Level", 
       subtitle="Sex", 
       caption="Source: 2021 BRFSS Data") +
       xlab(label="Age at Survey") +
  ylab(label="Proportion of Respondents who Report Ever being Told They Have Depression")+
  facet_wrap(~SEXVAR)+
  theme_bw()

ageprobs<- brfss21.c %>% filter(EDUCAG !=9) %>% filter(CHCSCNCR %in% c(1,2))%>%
    group_by(AGE80, RACE,SEXVAR) %>%
    summarize(p=mean(CHCSCNCR-1),n=n())
`summarise()` has grouped output by 'AGE80', 'RACE'. You can override using the
`.groups` argument.
ageprobs$num <- ageprobs$p*(1-ageprobs$p)

ageprobs$sep <- sqrt(ageprobs$num/ageprobs$n)

ageprobs$me <- 2*ageprobs$sep
  
ggplot(data =ageprobs, aes(x = AGE80, y = p, ymin=p-me, ymax=p+me, group= RACE)) +
     geom_line(aes(color =  factor(RACE))) + ylim(0,1) + geom_ribbon(alpha=0.03,aes()) +
labs(title="Mental Health by Race and Education Level", 
       subtitle="Sex", 
       caption="Source: 2021 BRFSS Data") +
       xlab(label="Age at Survey") +
  ylab(label="Proportion of Respondents who Report Ever being Told They Have Depression")+
  facet_wrap(~SEXVAR)+
  theme_bw()

#looking at association between categorical and numeric variable

boxplot(brfss21.c$AGE80 ~ brfss21.c$ADDEPEV3,
                col='steelblue',
        xlab='Depression Status',
        ylab='Age at Survey') 

OLS Models

#OLS models of bad mental health

brfss21.c$AGE80SQ<-brfss21.c$AGE80**2

L.model <- lm(ADDEPEV3 ~ AGE80 + factor(EDUCAG), data = brfss21.c)
summary(L.model)

Call:
lm(formula = ADDEPEV3 ~ AGE80 + factor(EDUCAG), data = brfss21.c)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.3116 -0.2159 -0.1763 -0.1344  0.8788 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)      3.513e-01  3.109e-03 112.979   <2e-16 ***
AGE80           -2.204e-03  3.431e-05 -64.233   <2e-16 ***
factor(EDUCAG)2 -3.508e-02  2.754e-03 -12.738   <2e-16 ***
factor(EDUCAG)3 -6.147e-03  2.736e-03  -2.247   0.0247 *  
factor(EDUCAG)4 -5.381e-02  2.656e-03 -20.262   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3961 on 425483 degrees of freedom
Multiple R-squared:  0.01242,   Adjusted R-squared:  0.01241 
F-statistic:  1337 on 4 and 425483 DF,  p-value: < 2.2e-16
Q.model <- lm(ADDEPEV3 ~ AGE80 +AGE80SQ + factor(EDUCAG), data = brfss21.c)
summary(Q.model)

Call:
lm(formula = ADDEPEV3 ~ AGE80 + AGE80SQ + factor(EDUCAG), data = brfss21.c)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.2779 -0.2210 -0.1830 -0.1178  0.9051 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)      2.298e-01  5.766e-03  39.851   <2e-16 ***
AGE80            3.156e-03  2.170e-04  14.543   <2e-16 ***
AGE80SQ         -5.172e-05  2.068e-06 -25.013   <2e-16 ***
factor(EDUCAG)2 -3.338e-02  2.753e-03 -12.123   <2e-16 ***
factor(EDUCAG)3 -6.566e-03  2.734e-03  -2.402   0.0163 *  
factor(EDUCAG)4 -5.634e-02  2.656e-03 -21.217   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3958 on 425482 degrees of freedom
Multiple R-squared:  0.01387,   Adjusted R-squared:  0.01385 
F-statistic:  1197 on 5 and 425482 DF,  p-value: < 2.2e-16
summary(Q.model)

Call:
lm(formula = ADDEPEV3 ~ AGE80 + AGE80SQ + factor(EDUCAG), data = brfss21.c)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.2779 -0.2210 -0.1830 -0.1178  0.9051 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)      2.298e-01  5.766e-03  39.851   <2e-16 ***
AGE80            3.156e-03  2.170e-04  14.543   <2e-16 ***
AGE80SQ         -5.172e-05  2.068e-06 -25.013   <2e-16 ***
factor(EDUCAG)2 -3.338e-02  2.753e-03 -12.123   <2e-16 ***
factor(EDUCAG)3 -6.566e-03  2.734e-03  -2.402   0.0163 *  
factor(EDUCAG)4 -5.634e-02  2.656e-03 -21.217   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3958 on 425482 degrees of freedom
Multiple R-squared:  0.01387,   Adjusted R-squared:  0.01385 
F-statistic:  1197 on 5 and 425482 DF,  p-value: < 2.2e-16

Binomial Models

Model 1 | Linear Age Specification

L.model_b <- glm(ADDEPEV3 ~ AGE80 + factor(EDUCAG), family = "binomial", data = brfss21.c)
summary(L.model_b)

Call:
glm(formula = ADDEPEV3 ~ AGE80 + factor(EDUCAG), family = "binomial", 
    data = brfss21.c)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.8910  -0.6905  -0.6181  -0.5485   2.0196  

Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)     -0.4727986  0.0187143 -25.264   <2e-16 ***
AGE80           -0.0136685  0.0002154 -63.448   <2e-16 ***
factor(EDUCAG)2 -0.2136027  0.0167963 -12.717   <2e-16 ***
factor(EDUCAG)3 -0.0350639  0.0165122  -2.124   0.0337 *  
factor(EDUCAG)4 -0.3337135  0.0162221 -20.572   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 423576  on 425487  degrees of freedom
Residual deviance: 418352  on 425483  degrees of freedom
AIC: 418362

Number of Fisher Scoring iterations: 4
exp(L.model_b$coefficients)
    (Intercept)           AGE80 factor(EDUCAG)2 factor(EDUCAG)3 factor(EDUCAG)4 
      0.6232556       0.9864245       0.8076692       0.9655437       0.7162589 

Holding all else constant, each additional year of life is associated with a 2% reduction in the odds of reporting depression. Holding all else constant, those who graduated from high school were associated with a 20% reduction in the odds of reporting that they’ve ever been told they have depression, compared to non-high school graduates. Holding all else constant, those who attended college but did not graduate were associated with a marginal 3.4% reducing in the odds of reporting they’ve even been told they have depression compared to non-high school graduates. College graduates were associated with a 29% reduction in the odds of reporting they’ve ever been told they have depression compared to non-high school graduates.

Model 2 | Quadratic Age Specification

Q.model_b <- glm(ADDEPEV3 ~ AGE80 + AGE80SQ + factor(EDUCAG), family = "binomial", data = brfss21.c)
summary(Q.model_b)

Call:
glm(formula = ADDEPEV3 ~ AGE80 + AGE80SQ + factor(EDUCAG), family = "binomial", 
    data = brfss21.c)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.8196  -0.7020  -0.6309  -0.5099   2.1174  

Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)     -1.348e+00  3.552e-02 -37.960   <2e-16 ***
AGE80            2.593e-02  1.373e-03  18.886   <2e-16 ***
AGE80SQ         -3.909e-04  1.338e-05 -29.206   <2e-16 ***
factor(EDUCAG)2 -1.988e-01  1.682e-02 -11.821   <2e-16 ***
factor(EDUCAG)3 -3.632e-02  1.653e-02  -2.197    0.028 *  
factor(EDUCAG)4 -3.535e-01  1.625e-02 -21.749   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 423576  on 425487  degrees of freedom
Residual deviance: 417482  on 425482  degrees of freedom
AIC: 417494

Number of Fisher Scoring iterations: 4
exp(Q.model_b$coefficients)
    (Intercept)           AGE80         AGE80SQ factor(EDUCAG)2 factor(EDUCAG)3 
      0.2596888       1.0262664       0.9996092       0.8196879       0.9643274 
factor(EDUCAG)4 
      0.7022215 

Holding all else constant, each additional year of life is associated with a 2% increase in the odds of reporting that ever told they had depression.

Holding all else constant, respondents who graduated from high school had 18% lower odds of reporting that they ever told they had depression compared to those who did not graduate school. Ceteris paribus, those who attended college but did not graduate had 3% lower odds of reporting that they had depression compared to those who did not graduate from high schoo, cet. par. Those respondents who did graduate from college were 29% less likely to report ever being told they had depression than those who did not graduate from high school, cet. par.

One interpretation of this is that starting college but not finishing is marginally more protective of mental health than not graduating from high school at all. By far, college graduates have the most protection.

L.model_b <- glm(ADDEPEV3 ~ AGE80 +factor(EDUCAG) + factor(SEXVAR), family = "binomial", data = brfss21.c)
summary(L.model_b)

Call:
glm(formula = ADDEPEV3 ~ AGE80 + factor(EDUCAG) + factor(SEXVAR), 
    family = "binomial", data = brfss21.c)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.0385  -0.7045  -0.5942  -0.4560   2.2215  

Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)     -0.7870419  0.0193054 -40.768  < 2e-16 ***
AGE80           -0.0153111  0.0002186 -70.036  < 2e-16 ***
factor(EDUCAG)2 -0.2145348  0.0169776 -12.636  < 2e-16 ***
factor(EDUCAG)3 -0.0736168  0.0167018  -4.408 1.04e-05 ***
factor(EDUCAG)4 -0.3669207  0.0164084 -22.362  < 2e-16 ***
factor(SEXVAR)2  0.7267146  0.0081732  88.914  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 423576  on 425487  degrees of freedom
Residual deviance: 410089  on 425482  degrees of freedom
AIC: 410101

Number of Fisher Scoring iterations: 4
exp(coef(L.model_b))
    (Intercept)           AGE80 factor(EDUCAG)2 factor(EDUCAG)3 factor(EDUCAG)4 
      0.4551893       0.9848055       0.8069167       0.9290277       0.6928646 
factor(SEXVAR)2 
      2.0682743 
Q.model_b <- glm(ADDEPEV3 ~ AGE80 + AGE80SQ + factor(EDUCAG)+factor(SEXVAR), family = "binomial", data = brfss21.c)
summary(Q.model_b)

Call:
glm(formula = ADDEPEV3 ~ AGE80 + AGE80SQ + factor(EDUCAG) + factor(SEXVAR), 
    family = "binomial", data = brfss21.c)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.9513  -0.7067  -0.5845  -0.4373   2.3168  

Coefficients:
                  Estimate Std. Error z value Pr(>|z|)    
(Intercept)     -1.680e+00  3.614e-02 -46.484  < 2e-16 ***
AGE80            2.506e-02  1.388e-03  18.055  < 2e-16 ***
AGE80SQ         -3.981e-04  1.352e-05 -29.455  < 2e-16 ***
factor(EDUCAG)2 -1.991e-01  1.700e-02 -11.711  < 2e-16 ***
factor(EDUCAG)3 -7.589e-02  1.672e-02  -4.539 5.65e-06 ***
factor(EDUCAG)4 -3.897e-01  1.645e-02 -23.695  < 2e-16 ***
factor(SEXVAR)2  7.275e-01  8.174e-03  89.010  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 423576  on 425487  degrees of freedom
Residual deviance: 409205  on 425481  degrees of freedom
AIC: 409219

Number of Fisher Scoring iterations: 4