Question 2

Carefully explain the differences between the KNN classifier and KNN regression methods.

The KNN classifier first and the regresion methods both identify the \(K\) points in the training data that are closest to \(x_0\), represented by \(Ν_0\). But the KNN classifier estimates the conditional probability for class \(j\) as the fraction of points in \(N_0\) whose response values equal \(j\) while the KNN regression estimates \(f(x_0)\) using the average of all the training responses in \(N_0\).

Question 9

9. This question involves the use of multiple linear regression on the Auto data set.

library(ISLR)

head(Auto)
##   mpg cylinders displacement horsepower weight acceleration year origin
## 1  18         8          307        130   3504         12.0   70      1
## 2  15         8          350        165   3693         11.5   70      1
## 3  18         8          318        150   3436         11.0   70      1
## 4  16         8          304        150   3433         12.0   70      1
## 5  17         8          302        140   3449         10.5   70      1
## 6  15         8          429        198   4341         10.0   70      1
##                        name
## 1 chevrolet chevelle malibu
## 2         buick skylark 320
## 3        plymouth satellite
## 4             amc rebel sst
## 5               ford torino
## 6          ford galaxie 500

(a) Produce a scatterplot matrix which includes all of the variables in the data set.

pairs(Auto)

(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, which is qualitative.

Correlation_of_Auto <- cor(Auto[-9])
Correlation_of_Auto
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results. Comment on the output. For instance:

COF_model <- lm(mpg~. -name , data = Auto)
summary(COF_model)
## 
## Call:
## lm(formula = mpg ~ . - name, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.5903 -2.1565 -0.1169  1.8690 13.0604 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -17.218435   4.644294  -3.707  0.00024 ***
## cylinders     -0.493376   0.323282  -1.526  0.12780    
## displacement   0.019896   0.007515   2.647  0.00844 ** 
## horsepower    -0.016951   0.013787  -1.230  0.21963    
## weight        -0.006474   0.000652  -9.929  < 2e-16 ***
## acceleration   0.080576   0.098845   0.815  0.41548    
## year           0.750773   0.050973  14.729  < 2e-16 ***
## origin         1.426141   0.278136   5.127 4.67e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.328 on 384 degrees of freedom
## Multiple R-squared:  0.8215, Adjusted R-squared:  0.8182 
## F-statistic: 252.4 on 7 and 384 DF,  p-value: < 2.2e-16

i. Is there a relationship between the predictors and the response?
Yes there is since we recieved an R square of .8215
ii. Which predictors appear to have a statistically significant relationship to the response?
Here we can see that displacement, year, origin, and weight have there p-values lower than the significance level of .05 thus we can say there is significance relationship there.
iii. What does the coefficient for the year variable suggest?
If we increase by one unit while keeping all the others the same then mpg will decrease.
(d) Use the plot() function to produce diagnostic plots of the linear regression fit. Comment on any problems you see with the fit. Do the residual plots suggest any unusually large outliers? Does the leverage plot identify any observations with unusually high leverage?

plot(COF_model)

The plots suggest there is a couple outliers that are significantly large. The leverage plot has marked two points with unusually high leverage.

(e) Use the * and : symbols to fit linear regression models with interaction effects. Do any interactions appear to be statistically significant?

horsepower_displacement <- lm(mpg~.-name + horsepower*displacement, data=Auto)
origin_horsepower <- lm(mpg~.-name + horsepower*origin, data=Auto)
summary(horsepower_displacement)
## 
## Call:
## lm(formula = mpg ~ . - name + horsepower * displacement, data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.7010 -1.6009 -0.0967  1.4119 12.6734 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             -1.894e+00  4.302e+00  -0.440  0.66007    
## cylinders                6.466e-01  3.017e-01   2.143  0.03275 *  
## displacement            -7.487e-02  1.092e-02  -6.859 2.80e-11 ***
## horsepower              -1.975e-01  2.052e-02  -9.624  < 2e-16 ***
## weight                  -3.147e-03  6.475e-04  -4.861 1.71e-06 ***
## acceleration            -2.131e-01  9.062e-02  -2.351  0.01921 *  
## year                     7.379e-01  4.463e-02  16.534  < 2e-16 ***
## origin                   6.891e-01  2.527e-01   2.727  0.00668 ** 
## displacement:horsepower  5.236e-04  4.813e-05  10.878  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.912 on 383 degrees of freedom
## Multiple R-squared:  0.8636, Adjusted R-squared:  0.8608 
## F-statistic: 303.1 on 8 and 383 DF,  p-value: < 2.2e-16
summary(origin_horsepower)
## 
## Call:
## lm(formula = mpg ~ . - name + horsepower * origin, data = Auto)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.277 -1.875 -0.225  1.570 12.080 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -2.196e+01  4.396e+00  -4.996 8.94e-07 ***
## cylinders         -5.275e-01  3.028e-01  -1.742   0.0823 .  
## displacement      -1.486e-03  7.607e-03  -0.195   0.8452    
## horsepower         8.173e-02  1.856e-02   4.404 1.38e-05 ***
## weight            -4.710e-03  6.555e-04  -7.186 3.52e-12 ***
## acceleration      -1.124e-01  9.617e-02  -1.168   0.2434    
## year               7.327e-01  4.780e-02  15.328  < 2e-16 ***
## origin             7.695e+00  8.858e-01   8.687  < 2e-16 ***
## horsepower:origin -7.955e-02  1.074e-02  -7.405 8.44e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.116 on 383 degrees of freedom
## Multiple R-squared:  0.8438, Adjusted R-squared:  0.8406 
## F-statistic: 258.7 on 8 and 383 DF,  p-value: < 2.2e-16

Yes horsepower and origin interaction seem to be significant while the horsepower displacement interaction doesnt change.

(f) Try a few different transformations of the variables, such as log(X), √X, X2. Comment on your findings.

summary(lm(mpg ~ . -name + log(origin), data=Auto))
## 
## Call:
## lm(formula = mpg ~ . - name + log(origin), data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.0095 -2.0785 -0.0982  1.9856 13.3608 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -1.479e+01  4.722e+00  -3.131  0.00187 ** 
## cylinders    -4.897e-01  3.212e-01  -1.524  0.12821    
## displacement  2.398e-02  7.653e-03   3.133  0.00186 ** 
## horsepower   -1.818e-02  1.371e-02  -1.326  0.18549    
## weight       -6.710e-03  6.551e-04 -10.243  < 2e-16 ***
## acceleration  7.910e-02  9.822e-02   0.805  0.42110    
## year          7.770e-01  5.178e-02  15.005  < 2e-16 ***
## origin       -3.169e+00  1.907e+00  -1.661  0.09743 .  
## log(origin)   8.366e+00  3.436e+00   2.435  0.01535 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.307 on 383 degrees of freedom
## Multiple R-squared:  0.8242, Adjusted R-squared:  0.8205 
## F-statistic: 224.5 on 8 and 383 DF,  p-value: < 2.2e-16
summary(lm(mpg ~ . -name + log(acceleration), data=Auto))
## 
## Call:
## lm(formula = mpg ~ . - name + log(acceleration), data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.7931 -2.0052 -0.1279  1.9299 13.1085 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        4.552e+01  1.479e+01   3.077  0.00224 ** 
## cylinders         -2.796e-01  3.193e-01  -0.876  0.38172    
## displacement       8.042e-03  7.805e-03   1.030  0.30344    
## horsepower        -3.434e-02  1.401e-02  -2.450  0.01473 *  
## weight            -5.343e-03  6.854e-04  -7.795 6.15e-14 ***
## acceleration       2.167e+00  4.782e-01   4.532 7.82e-06 ***
## year               7.560e-01  4.978e-02  15.186  < 2e-16 ***
## origin             1.329e+00  2.724e-01   4.877 1.58e-06 ***
## log(acceleration) -3.513e+01  7.886e+00  -4.455 1.10e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.249 on 383 degrees of freedom
## Multiple R-squared:  0.8303, Adjusted R-squared:  0.8267 
## F-statistic: 234.2 on 8 and 383 DF,  p-value: < 2.2e-16
summary(lm(mpg ~ . -name + I(horsepower^2), data=Auto))
## 
## Call:
## lm(formula = mpg ~ . - name + I(horsepower^2), data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.5497 -1.7311 -0.2236  1.5877 11.9955 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.3236564  4.6247696   0.286 0.774872    
## cylinders        0.3489063  0.3048310   1.145 0.253094    
## displacement    -0.0075649  0.0073733  -1.026 0.305550    
## horsepower      -0.3194633  0.0343447  -9.302  < 2e-16 ***
## weight          -0.0032712  0.0006787  -4.820 2.07e-06 ***
## acceleration    -0.3305981  0.0991849  -3.333 0.000942 ***
## year             0.7353414  0.0459918  15.989  < 2e-16 ***
## origin           1.0144130  0.2545545   3.985 8.08e-05 ***
## I(horsepower^2)  0.0010060  0.0001065   9.449  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.001 on 383 degrees of freedom
## Multiple R-squared:  0.8552, Adjusted R-squared:  0.8522 
## F-statistic: 282.8 on 8 and 383 DF,  p-value: < 2.2e-16
summary(lm(mpg ~ . -name + I(weight^2), data=Auto))
## 
## Call:
## lm(formula = mpg ~ . - name + I(weight^2), data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.4706 -1.6701 -0.1488  1.6383 12.5429 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.479e+00  4.614e+00   0.321  0.74867    
## cylinders    -2.840e-01  2.917e-01  -0.974  0.33083    
## displacement  1.371e-02  6.793e-03   2.019  0.04418 *  
## horsepower   -2.435e-02  1.243e-02  -1.959  0.05083 .  
## weight       -2.049e-02  1.580e-03 -12.970  < 2e-16 ***
## acceleration  6.571e-02  8.895e-02   0.739  0.46055    
## year          7.999e-01  4.615e-02  17.331  < 2e-16 ***
## origin        7.418e-01  2.603e-01   2.850  0.00461 ** 
## I(weight^2)   2.237e-06  2.341e-07   9.556  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.994 on 383 degrees of freedom
## Multiple R-squared:  0.8558, Adjusted R-squared:  0.8528 
## F-statistic: 284.2 on 8 and 383 DF,  p-value: < 2.2e-16
summary(lm(mpg ~ . -name + sqrt(horsepower), data=Auto))
## 
## Call:
## lm(formula = mpg ~ . - name + sqrt(horsepower), data = Auto)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.5402 -1.6717 -0.0778  1.4861 11.9754 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       4.299e+01  7.251e+00   5.929 6.82e-09 ***
## cylinders         6.037e-02  2.928e-01   0.206 0.836748    
## displacement     -5.870e-03  7.156e-03  -0.820 0.412560    
## horsepower        4.239e-01  4.532e-02   9.353  < 2e-16 ***
## weight           -3.285e-03  6.604e-04  -4.975 9.87e-07 ***
## acceleration     -3.342e-01  9.705e-02  -3.443 0.000638 ***
## year              7.398e-01  4.536e-02  16.308  < 2e-16 ***
## origin            9.159e-01  2.526e-01   3.626 0.000326 ***
## sqrt(horsepower) -1.050e+01  1.039e+00 -10.104  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.961 on 383 degrees of freedom
## Multiple R-squared:  0.8591, Adjusted R-squared:  0.8561 
## F-statistic: 291.8 on 8 and 383 DF,  p-value: < 2.2e-16

Using log does change the significance of the variable but not by that much. While the other two methods do not change the significance.

Question 10

This question should be answered using the Carseats data set.

(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.

library(ISLR)
head(Carseats)
##   Sales CompPrice Income Advertising Population Price ShelveLoc Age Education
## 1  9.50       138     73          11        276   120       Bad  42        17
## 2 11.22       111     48          16        260    83      Good  65        10
## 3 10.06       113     35          10        269    80    Medium  59        12
## 4  7.40       117    100           4        466    97    Medium  55        14
## 5  4.15       141     64           3        340   128       Bad  38        13
## 6 10.81       124    113          13        501    72       Bad  78        16
##   Urban  US
## 1   Yes Yes
## 2   Yes Yes
## 3   Yes Yes
## 4   Yes Yes
## 5   Yes  No
## 6    No Yes
regression_model <- lm(Sales~Price+Urban+US, data = Carseats)
summary(regression_model)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!
Since the price is neggative that means for every increase in a dollar sales drop by 54.5 units. Also if the carseat is in Urban area it is 22.9 units lower than in rural locations. And if the carseat is in the US then it is 1200.6 units higher than if it wasn’t.
(c) Write out the model in equation form, being careful to handle the qualitative variables properly.
Sales = 13.043469 -.054459\(*\)Price-.021916\(*\)Uban+1.2006\(*\)US

(d) For which of the predictors can you reject the null hypothesis \(H0 :βj =0\)?
Since both p-values of Price and US are less than the significance level we reject the null hypothesis. (e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.

regression_model2 <- lm(Sales~Price+US, data = Carseats)
summary(regression_model2)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

(f) How well do the models in (a) and (e) fit the data?
Both models have the same r squared but the model in e has a higher adjusted r squard so it is technically better.
(g) Using the model from (e), obtain 95% confidence intervals for the coefficient(s).

confidence_interval<-confint(regression_model2,level = 0.95)
sprintf('95%% confidence interval for the intercept is [%.4f,%.4f]',confidence_interval[1,1],confidence_interval[1,2])
## [1] "95% confidence interval for the intercept is [11.7903,14.2713]"
sprintf('95%% confidence interval for the coefficient of Price is [%.4f,%.4f]',confidence_interval[2,1],confidence_interval[2,2])
## [1] "95% confidence interval for the coefficient of Price is [-0.0648,-0.0442]"
sprintf('95%% confidence interval for the coefficient of US:Yes is [%.4f,%.4f]',confidence_interval[3,1],confidence_interval[3,2])
## [1] "95% confidence interval for the coefficient of US:Yes is [0.6915,1.7078]"

(h) Is there evidence of outliers or high leverage observations in the model from (e)?

plot(rstudent(regression_model), predict(regression_model2))

From what I see it doesn’t seem to be any outliers in the data since its all from -3 to 3.

Question 12

This problem involves simple linear regression without an intercept.
(a) Recall that the coefficient estimate \(βˆ\) for the linear regression of \(Y\) onto \(X\) without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of \(X\) onto \(Y\) the same as the coefficient estimate for the regression of \(Y\) onto \(X\)?
The circumstance where the regression of \(X\) onto \(Y\) is the same as \(Y\) onto \(X\) is when \(Σ_j x^2_j = Σ_j y^2_j\)
(b) Generate an example in R with \(n = 100\) observations in which the coefficient estimate for the regression of \(X\) onto \(Y\) is different from the coefficient estimate for the regression of \(Y\) onto \(X\).

x <- 1:100
sum(x^2)
## [1] 338350
y <- 2 * x + rnorm(100, sd = 0.1)
sum(y^2)
## [1] 1353583

(c) Generate an example in R with \(n = 100\) observations in which the coefficient estimate for the regression of \(X\) onto \(Y\) is the same as the coefficient estimate for the regression of \(Y\) onto \(X\).

x <- 1:100
sum(x^2)
## [1] 338350
y <- 100:1
sum(y^2)
## [1] 338350