R Packages

library(data.table)
library(dplyr)
library(plotly)

Create Data

thisDF <- data.frame(ownership=c(rep("private", 3), rep("public",3),rep("mixed", 3)), 
                 landuse=c(rep(c("residential", "recreation", "commercial"),3)),
                 acres=c(108,143,102, 300,320,500, 37,58,90))

Bespoke Function

This function turns a data frame into a hierarchical data structure.

as.sunburstDF <- function(DF, value_column = NULL, add_root = FALSE){
  require(data.table)
  
  colNamesDF <- names(DF)
  
  if(is.data.table(DF)){
    DT <- copy(DF)
  } else {
    DT <- data.table(DF, stringsAsFactors = FALSE)
  }
  
  if(add_root){
    DT[, root := "Total"]  
  }
  
  colNamesDT <- names(DT)
  hierarchy_columns <- setdiff(colNamesDT, value_column)
  DT[, (hierarchy_columns) := lapply(.SD, as.factor), .SDcols = hierarchy_columns]
  
  if(is.null(value_column) && add_root){
    setcolorder(DT, c("root", colNamesDF))
  } else if(!is.null(value_column) && !add_root) {
    setnames(DT, value_column, "values", skip_absent=TRUE)
    setcolorder(DT, c(setdiff(colNamesDF, value_column), "values"))
  } else if(!is.null(value_column) && add_root) {
    setnames(DT, value_column, "values", skip_absent=TRUE)
    setcolorder(DT, c("root", setdiff(colNamesDF, value_column), "values"))
  }
  
  hierarchyList <- list()
  
  for(i in seq_along(hierarchy_columns)){
    current_columns <- colNamesDT[1:i]
    if(is.null(value_column)){
      currentDT <- unique(DT[, ..current_columns][, values := .N, by = current_columns], by = current_columns)
    } else {
      currentDT <- DT[, lapply(.SD, sum, na.rm = TRUE), by=current_columns, .SDcols = "values"]
    }
    setnames(currentDT, length(current_columns), "labels")
    hierarchyList[[i]] <- currentDT
  }
  
  hierarchyDT <- rbindlist(hierarchyList, use.names = TRUE, fill = TRUE)
  
  parent_columns <- setdiff(names(hierarchyDT), c("labels", "values", value_column))
  hierarchyDT[, parents := apply(.SD, 1, function(x){fifelse(all(is.na(x)), yes = NA_character_, no = paste(x[!is.na(x)], sep = ":", collapse = " - "))}), .SDcols = parent_columns]
  hierarchyDT[, ids := apply(.SD, 1, function(x){paste(x[!is.na(x)], collapse = " - ")}), .SDcols = c("parents", "labels")]
  hierarchyDT[, c(parent_columns) := NULL]
  return(hierarchyDT)
}
sunburstDF <- as.sunburstDF(thisDF, value_column = "acres", add_root = TRUE)

head(sunburstDF)
##         labels values         parents                           ids
## 1:       Total   1658            <NA>                         Total
## 2:     private    353           Total               Total - private
## 3:      public   1120           Total                Total - public
## 4:       mixed    185           Total                 Total - mixed
## 5: residential    108 Total - private Total - private - residential
## 6:  recreation    143 Total - private  Total - private - recreation

Plotting the Sunburst

plot_ly(data = sunburstDF, ids = ~ids, labels= ~labels, parents = ~parents, values= ~values, type='sunburst', branchvalues = 'total')