Question #2. Carefully explain the differences between the KNN classifier and KNN regression methods.
K-Nearest Neighbors (KNN) is a machine learning algorithm that can be used for both classification and regression tasks. This algorithm differs in the output it produces. The KNN classifier is used to predict classes, while KNN regression is used to predict numerical values.
Specifically, KNN classification will predict the class of a new instance by finding the K nearest training instances and assigning the most frequent class amongst them as the prediction for the new instance.
In contrast, KNN regression estimates the numerical value of a new instance by finding the K nearest training instances and averaging or using another aggregate function on their values to create an estimation of the new instance.
Question #9. This question involves the use of multiple linear regression on the Auto data set.
(a) Produce a scatterplot matrix which includes all of the variables in the data set.
library(ISLR2)
library(MASS)
plot(Auto)
(b) Compute the matrix of correlations between the variables using the function cor(). You will need to exclude the name variable, cor() which is qualitative.
Auto1<-Auto
Auto1$name=NULL
cor(Auto1)
mpg cylinders displacement horsepower weight acceleration year origin
mpg 1.0000000 -0.7776175 -0.8051269 -0.7784268 -0.8322442 0.4233285 0.5805410 0.5652088
cylinders -0.7776175 1.0000000 0.9508233 0.8429834 0.8975273 -0.5046834 -0.3456474 -0.5689316
displacement -0.8051269 0.9508233 1.0000000 0.8972570 0.9329944 -0.5438005 -0.3698552 -0.6145351
horsepower -0.7784268 0.8429834 0.8972570 1.0000000 0.8645377 -0.6891955 -0.4163615 -0.4551715
weight -0.8322442 0.8975273 0.9329944 0.8645377 1.0000000 -0.4168392 -0.3091199 -0.5850054
acceleration 0.4233285 -0.5046834 -0.5438005 -0.6891955 -0.4168392 1.0000000 0.2903161 0.2127458
year 0.5805410 -0.3456474 -0.3698552 -0.4163615 -0.3091199 0.2903161 1.0000000 0.1815277
origin 0.5652088 -0.5689316 -0.6145351 -0.4551715 -0.5850054 0.2127458 0.1815277 1.0000000
(c) Use the lm() function to perform a multiple linear regression with mpg as the response and all other variables except name as the predictors. Use the summary() function to print the results.
AutoLR<-lm(mpg~ .-name,data=Auto)
summary(AutoLR)
Call:
lm(formula = mpg ~ . - name, data = Auto)
Residuals:
Min 1Q Median 3Q Max
-9.5903 -2.1565 -0.1169 1.8690 13.0604
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.218435 4.644294 -3.707 0.00024 ***
cylinders -0.493376 0.323282 -1.526 0.12780
displacement 0.019896 0.007515 2.647 0.00844 **
horsepower -0.016951 0.013787 -1.230 0.21963
weight -0.006474 0.000652 -9.929 < 2e-16 ***
acceleration 0.080576 0.098845 0.815 0.41548
year 0.750773 0.050973 14.729 < 2e-16 ***
origin 1.426141 0.278136 5.127 4.67e-07 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.328 on 384 degrees of freedom
Multiple R-squared: 0.8215, Adjusted R-squared: 0.8182
F-statistic: 252.4 on 7 and 384 DF, p-value: < 2.2e-16
Comment on the output. For instance:
(d) Use the plot() function to produce diagnostic plots of the linear regression fit.
par(mfrow=c(2,2))
plot(AutoLR)
Comment on any problems you see with the fit.
Do the residual plots suggest any unusually large outliers?
plot(predict(Autolm), rstudent(Autolm))
Does the leverage plot identify any observations with unusually high leverage?
(e) Use the * and : symbols to fit linear regression models with interaction effects.
Autolm <- lm(mpg ~ cylinders * displacement + displacement * weight, data = Auto)
summary(Autolm)
Call:
lm(formula = mpg ~ cylinders * displacement + displacement *
weight, data = Auto)
Residuals:
Min 1Q Median 3Q Max
-13.2934 -2.5184 -0.3476 1.8399 17.7723
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.262e+01 2.237e+00 23.519 < 2e-16 ***
cylinders 7.606e-01 7.669e-01 0.992 0.322
displacement -7.351e-02 1.669e-02 -4.403 1.38e-05 ***
weight -9.888e-03 1.329e-03 -7.438 6.69e-13 ***
cylinders:displacement -2.986e-03 3.426e-03 -0.872 0.384
displacement:weight 2.128e-05 5.002e-06 4.254 2.64e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.103 on 386 degrees of freedom
Multiple R-squared: 0.7272, Adjusted R-squared: 0.7237
F-statistic: 205.8 on 5 and 386 DF, p-value: < 2.2e-16
Do any interactions appear to be statistically significant?
(f) Try a few different transformations of the variables, such as log(X), √X, X^2. Comment on your findings.
AutoLR4<-lm(mpg~weight+I((weight)^2),Auto)
summary(AutoLR4)
Call:
lm(formula = mpg ~ weight + I((weight)^2), data = Auto)
Residuals:
Min 1Q Median 3Q Max
-12.6246 -2.7134 -0.3485 1.8267 16.0866
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.226e+01 2.993e+00 20.800 < 2e-16 ***
weight -1.850e-02 1.972e-03 -9.379 < 2e-16 ***
I((weight)^2) 1.697e-06 3.059e-07 5.545 5.43e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.176 on 389 degrees of freedom
Multiple R-squared: 0.7151, Adjusted R-squared: 0.7137
F-statistic: 488.3 on 2 and 389 DF, p-value: < 2.2e-16
plot(AutoLR4)
Question #10. This question should be answered using the Carseats data set.
data("Carseats")
summary(Carseats)
Sales CompPrice Income Advertising Population Price ShelveLoc
Min. : 0.000 Min. : 77 Min. : 21.00 Min. : 0.000 Min. : 10.0 Min. : 24.0 Bad : 96
1st Qu.: 5.390 1st Qu.:115 1st Qu.: 42.75 1st Qu.: 0.000 1st Qu.:139.0 1st Qu.:100.0 Good : 85
Median : 7.490 Median :125 Median : 69.00 Median : 5.000 Median :272.0 Median :117.0 Medium:219
Mean : 7.496 Mean :125 Mean : 68.66 Mean : 6.635 Mean :264.8 Mean :115.8
3rd Qu.: 9.320 3rd Qu.:135 3rd Qu.: 91.00 3rd Qu.:12.000 3rd Qu.:398.5 3rd Qu.:131.0
Max. :16.270 Max. :175 Max. :120.00 Max. :29.000 Max. :509.0 Max. :191.0
Age Education Urban US
Min. :25.00 Min. :10.0 No :118 No :142
1st Qu.:39.75 1st Qu.:12.0 Yes:282 Yes:258
Median :54.50 Median :14.0
Mean :53.32 Mean :13.9
3rd Qu.:66.00 3rd Qu.:16.0
Max. :80.00 Max. :18.0
(a) Fit a multiple regression model to predict Sales using Price, Urban, and US.
Carseatslm <- lm(Sales ~ Price + Urban + US, data = Carseats)
summary(Carseatslm)
Call:
lm(formula = Sales ~ Price + Urban + US, data = Carseats)
Residuals:
Min 1Q Median 3Q Max
-6.9206 -1.6220 -0.0564 1.5786 7.0581
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.043469 0.651012 20.036 < 2e-16 ***
Price -0.054459 0.005242 -10.389 < 2e-16 ***
UrbanYes -0.021916 0.271650 -0.081 0.936
USYes 1.200573 0.259042 4.635 4.86e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.472 on 396 degrees of freedom
Multiple R-squared: 0.2393, Adjusted R-squared: 0.2335
F-statistic: 41.52 on 3 and 396 DF, p-value: < 2.2e-16
(b) Provide an interpretation of each coefficient in the model. Be careful—some of the variables in the model are qualitative!
Price: there is likely a correlation between price and sales, with the coefficient showing a negative relationship; as price increases, sales decrease.
UrbanYes: there is not enough evidence to suggest a link between the location of the store and the number of sales.
USYes: there appears to be a positive relationship between whether a store is located in the US or not and the amount of sales, with an approximate increase of 1201 sales units if the store is based in the US.
(c) Write out the model in equation form, being careful to handle the qualitative variables properly.
(d) For which of the predictors can you reject the null hypothesis H0 : βj = 0?
(e) On the basis of your response to the previous question, fit a smaller model that only uses the predictors for which there is evidence of association with the outcome.
Carseatslm2<- lm(Sales ~ Price + US, data = Carseats)
summary(Carseatslm2)
Call:
lm(formula = Sales ~ Price + US, data = Carseats)
Residuals:
Min 1Q Median 3Q Max
-6.9269 -1.6286 -0.0574 1.5766 7.0515
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.03079 0.63098 20.652 < 2e-16 ***
Price -0.05448 0.00523 -10.416 < 2e-16 ***
USYes 1.19964 0.25846 4.641 4.71e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.469 on 397 degrees of freedom
Multiple R-squared: 0.2393, Adjusted R-squared: 0.2354
F-statistic: 62.43 on 2 and 397 DF, p-value: < 2.2e-16
(f) How well do the models in (a) and (e) fit the data?
(g) Using the model from (e), obtain 95 % confidence intervals for the coefficient(s).
confint(Carseatslm2)
2.5 % 97.5 %
(Intercept) 11.79032020 14.27126531
Price -0.06475984 -0.04419543
USYes 0.69151957 1.70776632
(h) Is there evidence of outliers or high leverage observations in the model from (e)?
plot(predict(Carseatslm2), rstudent(Carseatslm2))
par(mfrow = c(2, 2))
plot(Carseatslm2)
Question #12. This problem involves simple linear regression without an intercept.
(a) Recall that the coefficient estimate βˆ for the linear regression of Y onto X without an intercept is given by (3.38). Under what circumstance is the coefficient estimate for the regression of X onto Y the same as the coefficient estimate for the regression of Y onto X?
(b) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is different from the coefficient estimate for the regression of Y onto X.
x=rnorm(100)
y=rbinom(100,2,0.3)
n100<-lm(y~x+0)
summary(n100)
Call:
lm(formula = y ~ x + 0)
Residuals:
Min 1Q Median 3Q Max
-0.25701 0.03364 0.85394 1.06467 2.24023
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x -0.1470 0.1021 -1.44 0.153
Residual standard error: 0.9695 on 99 degrees of freedom
Multiple R-squared: 0.02052, Adjusted R-squared: 0.01063
F-statistic: 2.074 on 1 and 99 DF, p-value: 0.153
n100.2<-lm(x~y+0)
summary(n100.2)
Call:
lm(formula = x ~ y + 0)
Residuals:
Min 1Q Median 3Q Max
-2.28359 -0.65060 -0.06845 0.57698 2.42296
Coefficients:
Estimate Std. Error t value Pr(>|t|)
y -0.13959 0.09693 -1.44 0.153
Residual standard error: 0.9447 on 99 degrees of freedom
Multiple R-squared: 0.02052, Adjusted R-squared: 0.01063
F-statistic: 2.074 on 1 and 99 DF, p-value: 0.153
(c) Generate an example in R with n = 100 observations in which the coefficient estimate for the regression of X onto Y is the same as the coefficient estimate for the regression of Y onto X.
x=1:100
y=100:1
n200<-lm(y~x+0)
summary(n200)
Call:
lm(formula = y ~ x + 0)
Residuals:
Min 1Q Median 3Q Max
-49.75 -12.44 24.87 62.18 99.49
Coefficients:
Estimate Std. Error t value Pr(>|t|)
x 0.5075 0.0866 5.86 6.09e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 50.37 on 99 degrees of freedom
Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08
n200.2<-lm(x~y+0)
summary(n200.2)
Call:
lm(formula = x ~ y + 0)
Residuals:
Min 1Q Median 3Q Max
-49.75 -12.44 24.87 62.18 99.49
Coefficients:
Estimate Std. Error t value Pr(>|t|)
y 0.5075 0.0866 5.86 6.09e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 50.37 on 99 degrees of freedom
Multiple R-squared: 0.2575, Adjusted R-squared: 0.25
F-statistic: 34.34 on 1 and 99 DF, p-value: 6.094e-08