Assignment 3

#10 > Equation 4.32 derived an expression for log 1 Pr(Y =k|X=x) Pr(Y =K|X=x) in the setting where p > 1, so that the mean for the kth class, µk, is a pdimensional vector, and the shared covariance Σ is a p × p matrix. However, in the setting with p = 1, (4.32) takes a simpler form, since the means µ1,…,µK and the variance σ2 are scalars. In this simpler setting, repeat the calculation in (4.32), and provide expressions for ak and bkj in terms of πk, πK, µk, µK, and σ2

Given that: \[ log(\frac{Pr(Y =k | X =x )}{Pr(Y = K | X = x)}) \]

we can assume the following: \[ log(\frac{\pi _kf_k(x)}{\pi _Kf_K(x)})\] and \[ \log\left(\frac{\pi_k \exp\left(-\frac{1}{2}(x-\mu_k)^T(\Sigma_k)^{-1}(x-\mu_k)\right)}{\pi_K \exp\left(-\frac{1}{2}(x-\mu_K)^T(\Sigma_K)^{-1}(x-\mu_K)\right)}\right) \]

Under the assumption that all the classes have the same variance, the posterior probabilities will become \[ pk(x) = \frac{\pi_k\frac{1}{\sqrt(2\pi\sigma)}exp(\frac{1}{2\sigma^2}(x-\mu_k)^2)}{\sum^k_{i=1}\pi_i(\frac{1}{\sqrt{2\pi\sigma}}exp(\frac{1}{{2\sigma^2}})x-\mu_i)^2)} \]

By simplification, the formula becomes: \[ p_k(x) = x\frac{\mu_k}{\sigma^2}-\frac{\mu^2_k}{2\sigma^2} + log(\pi_k) \]

With the terms \[a_k\] is equivalent to \[ x\frac{\mu_k}{\sigma ^2} - \frac{\mu^2_k}{2\sigma^2}\] and \[b_kj\] is equivalent to \[log(\pi_k)\]

11

Work out the detailed forms of ak, bkj , and bkjl in (4.33). Your answer should involve πk, πK, µk, µK, Σk, and ΣK.

Section 4.33 assumes the following:

\[ log(\frac{Pr(Y =k | X =x )}{Pr(Y = K | X = x)}) = a_k + \sum_{j=1}^{p}b_{kj}x_j + \sum_{j=1}^{p}\sum_{i=1}^{p}c_{kji}x_{j}x_i \] Where \[a_k=\] \[log(\frac{\pi_k}{\pi_k})\]

and \[b_{bj}=\] \[log(\frac{b_{kj}x_j}{\pi_{Kj}x_j})\]

and lastly \[c_{kji}=\] \[log(\frac{c_{kji}x_jx_i}{c_{Kji}x_jx_i})\]

13

This question should be answered using the Weekly data set, which is part of the ISLR2 package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

  1. Produce some numerical and graphical summaries of te weekly data. Do there appear to be any patterns?
library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.1.3
head(Weekly)
##   Year   Lag1   Lag2   Lag3   Lag4   Lag5    Volume  Today Direction
## 1 1990  0.816  1.572 -3.936 -0.229 -3.484 0.1549760 -0.270      Down
## 2 1990 -0.270  0.816  1.572 -3.936 -0.229 0.1485740 -2.576      Down
## 3 1990 -2.576 -0.270  0.816  1.572 -3.936 0.1598375  3.514        Up
## 4 1990  3.514 -2.576 -0.270  0.816  1.572 0.1616300  0.712        Up
## 5 1990  0.712  3.514 -2.576 -0.270  0.816 0.1537280  1.178        Up
## 6 1990  1.178  0.712  3.514 -2.576 -0.270 0.1544440 -1.372      Down
pairs(Weekly)

summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume            Today         
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747   Min.   :-18.1950  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202   1st Qu.: -1.1540  
##  Median :  0.2380   Median :  0.2340   Median :1.00268   Median :  0.2410  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462   Mean   :  0.1499  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373   3rd Qu.:  1.4050  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821   Max.   : 12.0260  
##  Direction 
##  Down:484  
##  Up  :605  
##            
##            
##            
## 

The data has information from year 1990 - year 2010. As far as relationships go, there appears to me a logrithmic relationship between year and volume.

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

There is a strong correlation between Year and Volume

  1. Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
glm.fits = glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+ Volume, data = Weekly, family = binomial)
summary(glm.fits)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

The most significan variable appears to be Lag2 with an estiamte of .058. This means that if the stock market went up 2 years ago, it is more likely to go up in the week you are present in

  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression
glm.probs = predict(glm.fits, type = "response")
glm.probs[1:10]
##         1         2         3         4         5         6         7         8 
## 0.6086249 0.6010314 0.5875699 0.4816416 0.6169013 0.5684190 0.5786097 0.5151972 
##         9        10 
## 0.5715200 0.5554287
contrasts(Weekly$Direction)
##      Up
## Down  0
## Up    1
summary(Weekly$Direction)
## Down   Up 
##  484  605
dim(Weekly)
## [1] 1089    9
glm.pred = rep("Down", nrow(Weekly)) # uses the #of rows on weekly
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, Weekly$Direction)
##         
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557

The confusion matrix is presented above (54 + 557)/1089 = .5610652

This demonstrates that the model predicted the weekly market trend 56.11% of the time. However, it appears to predict for up 92% of the time, while for odwn only 11.15% of the time

  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
train = (Weekly$Year<2009)
Weekly.2009 = Weekly[!train,]
Direction.2009 = Weekly$Direction[!train]
dim(Weekly.2009)
## [1] 104   9
glm.fits = glm(Direction ~ Lag2, data = Weekly, family =binomial, subset = train)
glm.probs = predict(glm.fits, Weekly.2009, type = "response")
glm.pred = rep("Down", nrow(Weekly.2009))
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down    9  5
##     Up     34 56

\[ \frac{56+9}{104} = .625\] The model correctly ID the weekly movement of the stock market 62.5% of the time for the years 2009 and 2010

  1. Repeat (d) using LDA
library(MASS)
## Warning: package 'MASS' was built under R version 4.1.3
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:ISLR2':
## 
##     Boston
lda.fit = lda(Direction~Lag2, data = Weekly, subset = train)
lda.fit
## Call:
## lda(Direction ~ Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162

The prior probabilities of the groups for Down is .44 and for Up it is .56

lda.pred = predict(lda.fit, Weekly.2009)
names(lda.pred)
## [1] "class"     "posterior" "x"
lda.class = lda.pred$class
table(lda.class, Direction.2009)
##          Direction.2009
## lda.class Down Up
##      Down    9  5
##      Up     34 56

The lda model makes a correct prediction \[ (56+9)/104 \] 62.5% of the time

  1. Repeat (d) using QDA.
qda.fit = qda(Direction~Lag2, data = Weekly, subset = train)
qda.fit
## Call:
## qda(Direction ~ Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581

The prior probabilities of the groups for Down is .45 and for Up it is .55

qda.class = predict(qda.fit, Weekly.2009)$class
table(qda.class, Direction.2009)
##          Direction.2009
## qda.class Down Up
##      Down    0  0
##      Up     43 61

The QDA model predicted correctly \[ \frac{0+61}{104} = .5865385 \] of the time.

  1. Repeat (d) using KNN with K = 1.
attach(Weekly)
library(class)
## Warning: package 'class' was built under R version 4.1.3
train.X = cbind(Lag1, Lag2)[train,]
test.X = cbind(Lag1, Lag2)[!train,]
train.Direction = Weekly$Direction[train]
set.seed(1)
knn.pred = knn(train.X, test.X, train.Direction, k =1)
table(knn.pred, Direction.2009)
##         Direction.2009
## knn.pred Down Up
##     Down   18 29
##     Up     25 32
(32+18)/ 104
## [1] 0.4807692

Knn predicted correctly .48% of the time

detach(Weekly)
  1. Repeat (d) using naive Bayes.
library(e1071)
## Warning: package 'e1071' was built under R version 4.1.3
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.1.3
## 
## Attaching package: 'ISLR'
## The following objects are masked from 'package:ISLR2':
## 
##     Auto, Credit
nb.fit = naiveBayes(Direction~Lag2, data = Weekly, subset = train)
nb.fit
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
nb.class = predict(nb.fit, Weekly.2009)
table(nb.class, Direction.2009)
##         Direction.2009
## nb.class Down Up
##     Down    0  0
##     Up     43 61

The model only correctly predicts 58.65% of the time. However, it never predicts for down

  1. Which of these methods appear to provide the best results on the data?

By just looking at the predictions, it looks like Logistic Regression and Linear discriminant analysis had the highest (and same)accuracy out of all the 5 models.

  1. Experiment with different combinations of predictors including possible transformations and interactiosn for each method:
Logistic Regression:
train = (Weekly$Year<2009)
Weekly.2009 = Weekly[!train,]
Direction.2009 = Weekly$Direction[!train]
dim(Weekly.2009)
## [1] 104   9
glm.fits = glm(Direction ~ Lag2:Lag4+Lag2, data = Weekly, family =binomial, subset = train)
glm.probs = predict(glm.fits, Weekly.2009, type = "response")
glm.pred = rep("Down", nrow(Weekly.2009))
glm.pred[glm.probs > .5] = "Up"
table(glm.pred, Direction.2009)
##         Direction.2009
## glm.pred Down Up
##     Down    3  4
##     Up     40 57

\[ \frac{57+3}{104} = .5769 \]

The model correctly ID the weekly movement of the stock market 57.8% of the time for the years 2009 and 2010. Note, this is THE SAME as if it is

LDA
lda.fit = lda(Direction~ Lag2:Lag4+Lag2, data = Weekly, subset = train)
lda.fit
## Call:
## lda(Direction ~ Lag2:Lag4 + Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2  Lag2:Lag4
## Down -0.03568254 0.78824608
## Up    0.26036581 0.04407141
## 
## Coefficients of linear discriminants:
##                  LD1
## Lag2       0.3442725
## Lag2:Lag4 -0.0608715
lda.pred = predict(lda.fit, Weekly.2009)
names(lda.pred)
## [1] "class"     "posterior" "x"
lda.class = lda.pred$class
table(lda.class, Direction.2009)
##          Direction.2009
## lda.class Down Up
##      Down    3  3
##      Up     40 58

\[ \frac{58+3}{104} = .5865 \] The lda model makes a correct prediction 58.65% of the time

QDA
qda.fit = qda(Direction~Lag2:Lag4+Lag2, data = Weekly, subset = train)
qda.fit
## Call:
## qda(Direction ~ Lag2:Lag4 + Lag2, data = Weekly, subset = train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2  Lag2:Lag4
## Down -0.03568254 0.78824608
## Up    0.26036581 0.04407141
qda.class = predict(qda.fit, Weekly.2009)$class
table(qda.class, Direction.2009)
##          Direction.2009
## qda.class Down Up
##      Down    7  6
##      Up     36 55

\[ \frac{55+7}{104} = .5480769231\] The QDA model predicted correctly 54.8% of the time

KNN
attach(Weekly)

Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=10)
table(Weekknn.pred,Direction.2009)
##             Direction.2009
## Weekknn.pred Down Up
##         Down   17 21
##         Up     26 40

When k = 10, we have a 54.8% accuracy

Week.train=as.matrix(Lag2[train])
Week.test=as.matrix(Lag2[!train])
train.Direction =Direction[train]
set.seed(1)
Weekknn.pred=knn(Week.train,Week.test,train.Direction,k=100)
table(Weekknn.pred,Direction.2009)
##             Direction.2009
## Weekknn.pred Down Up
##         Down   10 11
##         Up     33 50

When k = 100, we have a 57.7% accuracy

Bayes
nb.fit = naiveBayes(Direction~Lag2*Lag2, data = Weekly, subset = train)
nb.fit
## 
## Naive Bayes Classifier for Discrete Predictors
## 
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## 
## A-priori probabilities:
## Y
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Conditional probabilities:
##       Lag2
## Y             [,1]     [,2]
##   Down -0.03568254 2.199504
##   Up    0.26036581 2.317485
nb.class = predict(nb.fit, Weekly.2009)
table(nb.class, Direction.2009)
##         Direction.2009
## nb.class Down Up
##     Down    0  0
##     Up     43 61

\[ \frac{63}{104} = .5865\]

The model only correctly predicts 58.65% of the time. However, it never predicts for down