load and define things
preprocess
Do eliminations
Likeability ratings
Likeability ratings by condition
Workability ratings
Workability ratings by condition
Edit distances
##
## Welch Two Sample t-test
##
## data: inGroup$mean and outGroup$mean
## t = -1.9889, df = 66.547, p-value = 0.05082
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.122754240 0.002069716
## sample estimates:
## mean of x mean of y
## 1.762277 2.322619
##
## Welch Two Sample t-test
##
## data: inGroup$mean and outGroup$mean
## t = -1.9355, df = 66.388, p-value = 0.05719
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.94294913 0.01459138
## sample estimates:
## mean of x mean of y
## 1.580357 2.044536
calculate power
##
## Two-sample t test power calculation
##
## n = 77.55691
## delta = 0.4641789
## sd = 1.025269
## sig.level = 0.05
## power = 0.8
## alternative = two.sided
##
## NOTE: n is number in *each* group
##
## Two-sample t test power calculation
##
## n = 100
## delta = 0.4641789
## sd = 1.025269
## sig.level = 0.05
## power = 0.8898661
## alternative = two.sided
##
## NOTE: n is number in *each* group
RTs
##
## Welch Two Sample t-test
##
## data: inGroup$mean_rt and outGroup$mean_rt
## t = 0.8379, df = 50.997, p-value = 0.406
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1951618 0.4747723
## sample estimates:
## mean of x mean of y
## 7.858352 7.718547
Accuracy by condition
##
## Welch Two Sample t-test
##
## data: inGroup$prop_correct and outGroup$prop_correct
## t = 1.5719, df = 60.285, p-value = 0.1212
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.02788216 0.23260973
## sample estimates:
## mean of x mean of y
## 0.3203125 0.2179487
calculate power
##
## Two-sample t test power calculation
##
## n = 200
## delta = 0.1023638
## sd = 0.2710341
## sig.level = 0.05
## power = 0.9646728
## alternative = two.sided
##
## NOTE: n is number in *each* group
Correlation between likability and number of edits
social variables predict edits controling for rt
##
## Call:
## lm(formula = edits ~ rt + howWell, data = k)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.18619 -0.51926 -0.06338 0.49333 2.77531
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.08775 1.25632 8.030 2.13e-11 ***
## rt -0.89847 0.16020 -5.608 4.20e-07 ***
## howWell -0.26932 0.06152 -4.378 4.30e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9064 on 67 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.4487, Adjusted R-squared: 0.4323
## F-statistic: 27.27 on 2 and 67 DF, p-value: 2.168e-09
##
## Call:
## lm(formula = edits ~ rt + likable, data = k)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.31334 -0.62638 -0.03155 0.63078 2.34097
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.24916 1.38540 7.398 2.93e-10 ***
## rt -0.95343 0.17306 -5.509 6.18e-07 ***
## likable -0.17351 0.06835 -2.539 0.0135 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9818 on 67 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.3532, Adjusted R-squared: 0.3339
## F-statistic: 18.29 on 2 and 67 DF, p-value: 4.575e-07
##
## Call:
## lm(formula = prop_correct ~ rt + likable, data = k)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.37664 -0.16256 -0.01435 0.09779 0.71793
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.43431 0.31254 -4.589 1.97e-05 ***
## rt 0.19345 0.03931 4.922 5.74e-06 ***
## likable 0.04416 0.01523 2.900 0.00503 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2241 on 68 degrees of freedom
## Multiple R-squared: 0.3271, Adjusted R-squared: 0.3073
## F-statistic: 16.53 on 2 and 68 DF, p-value: 1.411e-06
## edits likable howWell rt prop_correct sub
## edits 1 NA NA NA NA NA
## likable NA 1.00000000 0.49408050 0.01483277 0.2957269 NA
## howWell NA 0.49408050 1.00000000 0.09031898 0.4949209 NA
## rt NA 0.01483277 0.09031898 1.00000000 0.4939086 NA
## prop_correct NA 0.29572694 0.49492089 0.49390865 1.0000000 NA
## sub NA NA NA NA NA 1