# Load packages
library(tidyverse)
library(tidyquant)
Ra <- c("HMC", "WMT", "TGT") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 42 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 HMC 2022-01-31 0.0253
## 2 HMC 2022-02-28 0.0342
## 3 HMC 2022-03-31 -0.0620
## 4 HMC 2022-04-29 -0.0711
## 5 HMC 2022-05-31 -0.0514
## 6 HMC 2022-06-30 -0.0301
## 7 HMC 2022-07-29 0.0650
## 8 HMC 2022-08-31 0.0311
## 9 HMC 2022-09-30 -0.175
## 10 HMC 2022-10-31 0.0570
## # … with 32 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 14 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## 11 2022-11-30 0.0437
## 12 2022-12-30 -0.0873
## 13 2023-01-31 0.107
## 14 2023-02-15 0.0420
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 42 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 HMC 2022-01-31 0.0253 -0.101
## 2 HMC 2022-02-28 0.0342 -0.0343
## 3 HMC 2022-03-31 -0.0620 0.0341
## 4 HMC 2022-04-29 -0.0711 -0.133
## 5 HMC 2022-05-31 -0.0514 -0.0205
## 6 HMC 2022-06-30 -0.0301 -0.0871
## 7 HMC 2022-07-29 0.0650 0.123
## 8 HMC 2022-08-31 0.0311 -0.0464
## 9 HMC 2022-09-30 -0.175 -0.105
## 10 HMC 2022-10-31 0.0570 0.0390
## # … with 32 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActivePr…¹ Alpha Annua…² Beta `Beta-` `Beta+` Corre…³ Corre…⁴ Infor…⁵
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 HMC 0.121 0.0048 0.0586 0.600 0.834 0.760 0.667 0.0092 0.547
## 2 WMT 0.232 0.0121 0.156 0.471 -0.830 -0.262 0.531 0.0509 0.891
## 3 TGT 0.0155 0.0038 0.0466 0.860 -1.79 1.27 0.571 0.033 0.0439
## # … with 3 more variables: `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>, and abbreviated variable names ¹ActivePremium,
## # ²AnnualizedAlpha, ³Correlation, ⁴`Correlationp-value`, ⁵InformationRatio
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 HMC -0.758
## 2 WMT -0.446
## 3 TGT -0.565
HMC: (Negative skewed distribution of returns)
WMT: (Negative skewed distribution of returns)
TGT: (Negative skewed distribution of returns)