Determinar medidas de dispersión de datos como edades, sueldos y calificaciones.
Simular muestra de varios conjuntos de datos
Se identifica media de los datos
Se muestran tablas de frecuencias
Se calculan medidas de dispersión, varianza y desviación estándar.
Se visualiza la dispersión de los datos en relación a la media.
Se calcula el coeficiente de variación y se compara con similares conjuntos de datos.
¿Para que sirven las medidas de dispersión?
El reporte de una medida de centralización como la media, mediana y moda sólo da información parcial sobre un conjunto o distribución de datos. Diferentes muestras o poblaciones pueden tener medidas idénticas de centro y aun así diferir una de otra en otras importantes maneras. [@devore2016].
La imagen siguiente muestra tres conjuntos de datos y los tres tienen media y mediana igual, sin embargo la dispersión es diferentes, es decir cual conjunto de datos se aleja mas de la media.
La primera tiene la cantidad más grande de variabilidad, la tercera tiene la cantidad más pequeña y la segunda es intermedia respecto a las otras dos en este aspecto.
La varianza es una medida de variabilidad que utiliza todos los datos. La varianza está basada en la diferencia entre el valor de cada observación (\(x_i\)) y la media \(\bar{x}\) [@anderson2008].
Se identifican las fórmulas para varianza poblacional y muestral, dependiendo de los datos a analizar, si es todas las observaciones de la población y solo una muestra de la misma.
Para efectos de este ejercicio se utiliza mas específicamente la varianza y desviación muestral.
\[ \sigma^2 = \frac{\sum_{i=1}^N(x_i- \mu)^2}{N} \]
siendo \(\mu\) la media poblacional y \(N\) el total de los datos de la población.
\[ S^2 = \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1} \]
siendo \(\bar{x}\) la media muestral y \(n\) el total de los datos de la muestra.
Las unidades al cuadrado de la varianza dificultan la comprensión e interpretación intuitiva de los valores numéricos de la varianza.
La desviación estándar se define como la raíz cuadrada positiva de la varianza.
Continuando con la notación adoptada para la varianza muestral y para la varianza poblacional, se emplea \(\varsigma\) para denotar la desviación estándar muestral y \(\sigma\) para denotar la desviación estándar poblacional.
¿Qué se gana con convertir la varianza en la correspondiente desviación estándar?.
Como la desviación estándar es la raíz cuadrada de la varianza, las unidades de la varianza, son al cuadrado, posiblemente dificulta su interpretación, por tanto, la desviación estándar de se interpreta de mejor manera la variabilidad de los datos porque el valor resultante se mide en las mismas unidades que los datos originales. [@anderson2008].
Una interpretación preliminar de la desviación estándar muestral es que es el tamaño de una desviación típica o representativa de la media muestral dentro de la muestra dada.[@devore2016]
\[ \sigma = \sqrt{\sigma^2} \]
\[ S = \sqrt{S^2} \]
En algunas ocasiones se requiere un estadístico descriptivo que indique cuán grande es la desviación estándar en relación con la media. Existe el coeficiente de variación y resuelve ese propósito.
La fórmula del coeficiente de variación indica el grado de dispersión de un conjunto de datos con respecto a la media.
\[ CV = \left(\frac{\sigma}{\bar{x}} \times 100 \right) \text{%} \]
Instalar librerías anticipadamente con install.packages(“fdth”)
library(fdth) # Para tablas de frecuencias
library(ggplot2) # Para gráficos
Se establece valor de semilla para que se generen los mismos datos.
set.seed(22041178)
Se generan 200 edades en dos conjuntos de datos diferentes.
edades1 se genera con función de aleatoriedad sample()
edades2 se genera con la función de distribución normal rnorm().
n <- 200
edades1 <- sample(x = 18:60,size = n,replace = TRUE )
Se identifican los datos edades1
edades1
## [1] 21 52 47 37 32 29 31 28 31 23 19 57 47 19 18 39 34 57 56 56 58 53 32 60 59
## [26] 57 59 50 44 41 47 59 56 43 32 42 60 52 22 40 23 37 56 33 58 21 41 27 33 39
## [51] 55 43 23 19 26 43 25 33 53 35 28 42 60 48 59 20 21 40 48 20 27 23 21 23 51
## [76] 49 33 52 45 29 25 56 20 60 31 45 39 37 36 41 22 42 52 44 33 53 59 47 49 53
## [101] 51 37 27 45 48 41 23 57 40 50 26 25 27 43 46 37 56 24 30 25 26 32 46 21 20
## [126] 55 60 37 39 25 37 37 37 23 33 22 28 34 25 21 54 59 44 59 52 42 37 18 49 21
## [151] 32 52 25 31 34 25 50 39 54 47 44 19 57 46 37 22 55 45 24 19 52 48 42 23 26
## [176] 23 32 49 32 56 54 25 56 47 60 46 49 43 42 19 24 43 39 37 55 55 39 55 29 59
Se muestran las tablas de frecuencias del conjunto de datos edades1.
En las tablas de frecuencias se determina matemáticamente el número de clases, La opción matemáticamente más consistente es la conocida como regla de Sturges.
La solución de esta ecuación proporciona una regla práctica para obtener el número de clases.
\[ k=1+3.322*log10(n) \]
Siendo k el número de clases
log es la función logarítmica de base 10, log10()
y n el total de la muestra
El rango de clase de acuerdo a Sturges está dada por \[ h=\frac{max(datos) - min(datos)}{k} \]Siendo h el rango de cada clase y max(datos) - min(datos) el rango del total de los datos, es decir la diferencia entre límite superior menos límite inferior.
Existen otras formas de determinar el número de clases a utilizar, algunas más complejas, otras más simples.
Independientemente de la forma de cálculo seleccionada ya se Sturges, Scott o Freedman-Diaconis (FD), lo realmente importante es que la información mostrada en la tabla de frecuencia sea fácil de revisar, que no contenga un número excesivo de clases y que la información que en ella se refleja permita comprender cómo se presentan los datos en la población o de una muestra.
El número de clase de acuerdo par \(n=200\) de acuerdo a Sturges es:
k <- round(1+3.322 * log10(n))
k
## [1] 9
La amplitud h1 y h2 para cada conjunto de datos es igual a:
h = diff(range(edades1)) / k
h
## [1] 4.666667
tabla.edades1 <- fdt(x = edades1, breaks="Sturges")
tabla.edades1
## Class limits f rf rf(%) cf cf(%)
## [17.82,22.57) 23 0.12 11.5 23 11.5
## [22.57,27.33) 29 0.14 14.5 52 26.0
## [27.33,32.08) 18 0.09 9.0 70 35.0
## [32.08,36.83) 11 0.06 5.5 81 40.5
## [36.83,41.59) 26 0.13 13.0 107 53.5
## [41.59,46.34) 24 0.12 12.0 131 65.5
## [46.34,51.09) 20 0.10 10.0 151 75.5
## [51.09,55.85) 20 0.10 10.0 171 85.5
## [55.85,60.6) 29 0.14 14.5 200 100.0
Class limits significa el rango de cada clase
f significa la frecuencia, la suma de f debe ser el total de elementos.
rf significa frecuencia relativa la suma de todas las rf debe ser el 1
rf% significa el valor relativo pero en porcentaje, la suma de rf% debe ser el 100%
cf significa frecuencia acumulada
cf% significa frecuencia porcentual acumulada
hist(edades1, breaks = "Sturges" )
datos.edades1 <- data.frame(x = 1:length(edades1), edad= edades1)
ggplot(datos.edades1, aes(x=x, y=edad))+
geom_point() +
geom_hline(yintercept = mean(edades1), col='red') +
ggtitle(label = "Dispersión de edades1", subtitle = paste("media = ", mean(edades1)))
edades2 <- round(rnorm(n = n, mean = 30, sd = 5))
Se identifican los datos edades2
sort(edades2)
## [1] 21 21 21 22 22 23 23 23 23 23 23 24 24 24 24 24 24 24 24 25 25 25 25 25 25
## [26] 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27
## [51] 27 27 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 29
## [76] 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30
## [101] 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32 32
## [126] 32 32 32 32 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33
## [151] 34 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 36 36 36 36 36 36
## [176] 36 36 36 37 37 37 37 37 37 37 38 38 38 38 39 39 39 39 39 40 40 41 43 47 47
Se muestran las tablas de frecuencias del conjunto de datos edades2.
hist(edades2, breaks = "Sturges" )
datos.edades2 <- data.frame(x = 1:length(edades2), edad= edades2)
ggplot(datos.edades2, aes(x=x, y=edad))+
geom_point() +
geom_hline(yintercept = mean(edades2), col='red') +
ggtitle(label = "Dispersión de edades2", subtitle = paste("media = ", mean(edades2)))
Las medidas de dispersión varianza y desviación estándar miden el valor de dispersión de un conjunto de datos numéricos.
La dispersión significa que tanto los datos están alejados de la media, el valor de la desviación se compara con la media y se interpreta que tanto los valores distan del valor de la media.
media_edades1 <- mean(edades1)
media_edades2 <- mean(edades2)
media_edades1; media_edades2
## [1] 39.36
## [1] 30.53
\[ S^2 = \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1} \]
\[ S = \sqrt{S^{2}} \]
tabla.varianza.edades1 <- data.frame(x = edades1,
x_media = media_edades1,
xi.menos.media = edades1 - media_edades1,
xi.menos.media.cuad = (edades1 - media_edades1)^2)
tabla.varianza.edades1
## x x_media xi.menos.media xi.menos.media.cuad
## 1 21 39.36 -18.36 337.0896
## 2 52 39.36 12.64 159.7696
## 3 47 39.36 7.64 58.3696
## 4 37 39.36 -2.36 5.5696
## 5 32 39.36 -7.36 54.1696
## 6 29 39.36 -10.36 107.3296
## 7 31 39.36 -8.36 69.8896
## 8 28 39.36 -11.36 129.0496
## 9 31 39.36 -8.36 69.8896
## 10 23 39.36 -16.36 267.6496
## 11 19 39.36 -20.36 414.5296
## 12 57 39.36 17.64 311.1696
## 13 47 39.36 7.64 58.3696
## 14 19 39.36 -20.36 414.5296
## 15 18 39.36 -21.36 456.2496
## 16 39 39.36 -0.36 0.1296
## 17 34 39.36 -5.36 28.7296
## 18 57 39.36 17.64 311.1696
## 19 56 39.36 16.64 276.8896
## 20 56 39.36 16.64 276.8896
## 21 58 39.36 18.64 347.4496
## 22 53 39.36 13.64 186.0496
## 23 32 39.36 -7.36 54.1696
## 24 60 39.36 20.64 426.0096
## 25 59 39.36 19.64 385.7296
## 26 57 39.36 17.64 311.1696
## 27 59 39.36 19.64 385.7296
## 28 50 39.36 10.64 113.2096
## 29 44 39.36 4.64 21.5296
## 30 41 39.36 1.64 2.6896
## 31 47 39.36 7.64 58.3696
## 32 59 39.36 19.64 385.7296
## 33 56 39.36 16.64 276.8896
## 34 43 39.36 3.64 13.2496
## 35 32 39.36 -7.36 54.1696
## 36 42 39.36 2.64 6.9696
## 37 60 39.36 20.64 426.0096
## 38 52 39.36 12.64 159.7696
## 39 22 39.36 -17.36 301.3696
## 40 40 39.36 0.64 0.4096
## 41 23 39.36 -16.36 267.6496
## 42 37 39.36 -2.36 5.5696
## 43 56 39.36 16.64 276.8896
## 44 33 39.36 -6.36 40.4496
## 45 58 39.36 18.64 347.4496
## 46 21 39.36 -18.36 337.0896
## 47 41 39.36 1.64 2.6896
## 48 27 39.36 -12.36 152.7696
## 49 33 39.36 -6.36 40.4496
## 50 39 39.36 -0.36 0.1296
## 51 55 39.36 15.64 244.6096
## 52 43 39.36 3.64 13.2496
## 53 23 39.36 -16.36 267.6496
## 54 19 39.36 -20.36 414.5296
## 55 26 39.36 -13.36 178.4896
## 56 43 39.36 3.64 13.2496
## 57 25 39.36 -14.36 206.2096
## 58 33 39.36 -6.36 40.4496
## 59 53 39.36 13.64 186.0496
## 60 35 39.36 -4.36 19.0096
## 61 28 39.36 -11.36 129.0496
## 62 42 39.36 2.64 6.9696
## 63 60 39.36 20.64 426.0096
## 64 48 39.36 8.64 74.6496
## 65 59 39.36 19.64 385.7296
## 66 20 39.36 -19.36 374.8096
## 67 21 39.36 -18.36 337.0896
## 68 40 39.36 0.64 0.4096
## 69 48 39.36 8.64 74.6496
## 70 20 39.36 -19.36 374.8096
## 71 27 39.36 -12.36 152.7696
## 72 23 39.36 -16.36 267.6496
## 73 21 39.36 -18.36 337.0896
## 74 23 39.36 -16.36 267.6496
## 75 51 39.36 11.64 135.4896
## 76 49 39.36 9.64 92.9296
## 77 33 39.36 -6.36 40.4496
## 78 52 39.36 12.64 159.7696
## 79 45 39.36 5.64 31.8096
## 80 29 39.36 -10.36 107.3296
## 81 25 39.36 -14.36 206.2096
## 82 56 39.36 16.64 276.8896
## 83 20 39.36 -19.36 374.8096
## 84 60 39.36 20.64 426.0096
## 85 31 39.36 -8.36 69.8896
## 86 45 39.36 5.64 31.8096
## 87 39 39.36 -0.36 0.1296
## 88 37 39.36 -2.36 5.5696
## 89 36 39.36 -3.36 11.2896
## 90 41 39.36 1.64 2.6896
## 91 22 39.36 -17.36 301.3696
## 92 42 39.36 2.64 6.9696
## 93 52 39.36 12.64 159.7696
## 94 44 39.36 4.64 21.5296
## 95 33 39.36 -6.36 40.4496
## 96 53 39.36 13.64 186.0496
## 97 59 39.36 19.64 385.7296
## 98 47 39.36 7.64 58.3696
## 99 49 39.36 9.64 92.9296
## 100 53 39.36 13.64 186.0496
## 101 51 39.36 11.64 135.4896
## 102 37 39.36 -2.36 5.5696
## 103 27 39.36 -12.36 152.7696
## 104 45 39.36 5.64 31.8096
## 105 48 39.36 8.64 74.6496
## 106 41 39.36 1.64 2.6896
## 107 23 39.36 -16.36 267.6496
## 108 57 39.36 17.64 311.1696
## 109 40 39.36 0.64 0.4096
## 110 50 39.36 10.64 113.2096
## 111 26 39.36 -13.36 178.4896
## 112 25 39.36 -14.36 206.2096
## 113 27 39.36 -12.36 152.7696
## 114 43 39.36 3.64 13.2496
## 115 46 39.36 6.64 44.0896
## 116 37 39.36 -2.36 5.5696
## 117 56 39.36 16.64 276.8896
## 118 24 39.36 -15.36 235.9296
## 119 30 39.36 -9.36 87.6096
## 120 25 39.36 -14.36 206.2096
## 121 26 39.36 -13.36 178.4896
## 122 32 39.36 -7.36 54.1696
## 123 46 39.36 6.64 44.0896
## 124 21 39.36 -18.36 337.0896
## 125 20 39.36 -19.36 374.8096
## 126 55 39.36 15.64 244.6096
## 127 60 39.36 20.64 426.0096
## 128 37 39.36 -2.36 5.5696
## 129 39 39.36 -0.36 0.1296
## 130 25 39.36 -14.36 206.2096
## 131 37 39.36 -2.36 5.5696
## 132 37 39.36 -2.36 5.5696
## 133 37 39.36 -2.36 5.5696
## 134 23 39.36 -16.36 267.6496
## 135 33 39.36 -6.36 40.4496
## 136 22 39.36 -17.36 301.3696
## 137 28 39.36 -11.36 129.0496
## 138 34 39.36 -5.36 28.7296
## 139 25 39.36 -14.36 206.2096
## 140 21 39.36 -18.36 337.0896
## 141 54 39.36 14.64 214.3296
## 142 59 39.36 19.64 385.7296
## 143 44 39.36 4.64 21.5296
## 144 59 39.36 19.64 385.7296
## 145 52 39.36 12.64 159.7696
## 146 42 39.36 2.64 6.9696
## 147 37 39.36 -2.36 5.5696
## 148 18 39.36 -21.36 456.2496
## 149 49 39.36 9.64 92.9296
## 150 21 39.36 -18.36 337.0896
## 151 32 39.36 -7.36 54.1696
## 152 52 39.36 12.64 159.7696
## 153 25 39.36 -14.36 206.2096
## 154 31 39.36 -8.36 69.8896
## 155 34 39.36 -5.36 28.7296
## 156 25 39.36 -14.36 206.2096
## 157 50 39.36 10.64 113.2096
## 158 39 39.36 -0.36 0.1296
## 159 54 39.36 14.64 214.3296
## 160 47 39.36 7.64 58.3696
## 161 44 39.36 4.64 21.5296
## 162 19 39.36 -20.36 414.5296
## 163 57 39.36 17.64 311.1696
## 164 46 39.36 6.64 44.0896
## 165 37 39.36 -2.36 5.5696
## 166 22 39.36 -17.36 301.3696
## 167 55 39.36 15.64 244.6096
## 168 45 39.36 5.64 31.8096
## 169 24 39.36 -15.36 235.9296
## 170 19 39.36 -20.36 414.5296
## 171 52 39.36 12.64 159.7696
## 172 48 39.36 8.64 74.6496
## 173 42 39.36 2.64 6.9696
## 174 23 39.36 -16.36 267.6496
## 175 26 39.36 -13.36 178.4896
## 176 23 39.36 -16.36 267.6496
## 177 32 39.36 -7.36 54.1696
## 178 49 39.36 9.64 92.9296
## 179 32 39.36 -7.36 54.1696
## 180 56 39.36 16.64 276.8896
## 181 54 39.36 14.64 214.3296
## 182 25 39.36 -14.36 206.2096
## 183 56 39.36 16.64 276.8896
## 184 47 39.36 7.64 58.3696
## 185 60 39.36 20.64 426.0096
## 186 46 39.36 6.64 44.0896
## 187 49 39.36 9.64 92.9296
## 188 43 39.36 3.64 13.2496
## 189 42 39.36 2.64 6.9696
## 190 19 39.36 -20.36 414.5296
## 191 24 39.36 -15.36 235.9296
## 192 43 39.36 3.64 13.2496
## 193 39 39.36 -0.36 0.1296
## 194 37 39.36 -2.36 5.5696
## 195 55 39.36 15.64 244.6096
## 196 55 39.36 15.64 244.6096
## 197 39 39.36 -0.36 0.1296
## 198 55 39.36 15.64 244.6096
## 199 29 39.36 -10.36 107.3296
## 200 59 39.36 19.64 385.7296
Calculando la suma y determinando varianza
n <- length(edades1)
suma <- sum(tabla.varianza.edades1$xi.menos.media.cuad)
suma
## [1] 32972.08
varianza <- suma / (n -1)
varianza
## [1] 165.6888
Con las funciones de var() y sd() se determinan la varianza y a desviación respectivamente y con mean() la media de la muestra.
varianza_edades1 <- var(edades1)
varianza_edades2 <- var(edades2)
desv.std_edades1 <- sd(edades1)
desv.std_edades2 <- sd(edades2)
Se muestran los valores generados, el punto y coma en R significa en una misma linea se ejecutan dos instrucciones o dos comandos, en este caso solo mostrar los valores.
varianza_edades1; varianza_edades2
## [1] 165.6888
## [1] 22.61216
desv.std_edades1; desv.std_edades2
## [1] 12.87202
## [1] 4.755225
El coeficiente de variación (CV) es un estadístico que permite comparar entre dos o mas conjuntos de datos cuál es estos tiene una dispersión mayor o menor.
Al identificar el CV de un conjunto de datos y compararlo con otro CV de otro conjunto de datos similares, se puede determinar cual de los datos tiene mayor o menor dispersión y se puede concluir en cual es estos está mas dispersos sus datos, es decir cuál de ellos se aleja mas o menos de la media, según sea el caso.
Para determinar el coeficiente de variación se establece la división de la desviación estándar entre la media del conjunto de datos.
\[ CV = \frac{\sigma}{\bar{x}} \]
CV_edades1 <- desv.std_edades1 / media_edades1
CV_edades1
## [1] 0.327033
CV_edades2 <- desv.std_edades2 / media_edades2
CV_edades2
## [1] 0.1557558
¿Qué representan las tablas de frecuencias para los datos edades?
Las tablas de frecuencia representan las clases y la frecuencias de casos de cada una de las clases, permiten observar los valores relativos y porcentuales de las frecuencias.
Con respecto a edades1 existe un 14.5% de valores que están en un rango o intervalo entre 22.57-27.33 y 55.85-60.6.
¿Cuáles son los valores media y desviación de los conjuntos de datos edades?
Con respecto a los valores estadísticos del conjunto de datos edades1, el valor la media es de: 39.36, la desviación es de: 12.8720179.
Con respecto a los valores estadísticos del conjunto de datos edades2, el valor la media es de: 30.53, la desviación es de: 4.7552246.
¿Cuáles son los valores de coeficiente de variación para los conjuntos de datos edades y que representan?
El coeficiente de variación de edades1 es de: 0.327033y el CV de edades2 es de: 0.1557558
Existe mayor dispersión en los valores del conjunto de datos edades1 con respecto a edades2 por tener ligeramente mayor valor en su coeficiente de variación.