Determinar medidas de dispersión de datos como edades, sueldos y calificaciones.
Simular muestra de varios conjuntos de datos
Se identifica media de los datos
Se muestran tablas de frecuencias
Se calculan medidas de dispersión, varianza y desviación estándar.
Se visualiza la dispersión de los datos en relación a la media.
Se calcula el coeficiente de variación y se compara con similares conjuntos de datos.
¿Para que sirven las medidas de dispersión?
El reporte de una medida de centralización como la media, mediana y moda sólo da información parcial sobre un conjunto o distribución de datos. Diferentes muestras o poblaciones pueden tener medidas idénticas de centro y aun así diferir una de otra en otras importantes maneras. [@devore2016].
La imagen siguiente muestra dos conjuntos de datos y los tres tienen media y mediana igual, sin embargo la dispersión es diferentes, es decir cual conjunto de datos se aleja mas de la media.
La segunda tiene la cantidad más grande de variabilidad, la primera tiene la cantidad más pequeña
La varianza es una medida de variabilidad que utiliza todos los datos. La varianza está basada en la diferencia entre el valor de cada observación (\(x_i\)) y la media \(\bar{x}\) [@anderson2008].
Se identifican las fórmulas para varianza poblacional y muestral, dependiendo de los datos a analizar, si es todas las observaciones de la población y solo una muestra de la misma.
Para efectos de este ejercicio se utiliza mas específicamente la varianza y desviación muestral.
\[ \sigma^2 = \frac{\sum_{i=1}^N(x_i- \mu)^2}{N} \]
siendo \(\mu\) la media poblacional y \(N\) el total de los datos de la población.
\[ S^2 = \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1} \]
siendo \(\bar{x}\) la media muestral y \(n\) el total de los datos de la muestra.
Las unidades al cuadrado de la varianza dificultan la comprensión e interpretación intuitiva de los valores numéricos de la varianza.
La desviación estándar se define como la raíz cuadrada positiva de la varianza.
Continuando con la notación adoptada para la varianza muestral y para la varianza poblacional, se emplea \(\varsigma\) para denotar la desviación estándar muestral y \(\sigma\) para denotar la desviación estándar poblacional.
¿Qué se gana con convertir la varianza en la correspondiente desviación estándar?.
Como la desviación estándar es la raíz cuadrada de la varianza, las unidades de la varianza, son al cuadrado, posiblemente dificulta su interpretación, por tanto, la desviación estándar de se interpreta de mejor manera la variabilidad de los datos porque el valor resultante se mide en las mismas unidades que los datos originales. [@anderson2008].
Una interpretación preliminar de la desviación estándar muestral es que es el tamaño de una desviación típica o representativa de la media muestral dentro de la muestra dada.[@devore2016]
\[ \sigma = \sqrt{\sigma^2} \]
\[ S = \sqrt{S^2} \]
En algunas ocasiones se requiere un estadístico descriptivo que indique cuán grande es la desviación estándar en relación con la media. Existe el coeficiente de variación y resuelve ese propósito.
La fórmula del coeficiente de variación indica el grado de dispersión de un conjunto de datos con respecto a la media.
\[ CV = \left(\frac{\sigma}{\bar{x}} \times 100 \right) \text{%} \]
Instalar librerías anticipadamente con install.packages(“fdth”)
library(fdth) # Para tablas de frecuencias
library(ggplot2) # Para gráficos
Se establece valor de semilla para que se generen los mismos datos.
set.seed(1196)
Se generan 200 edades en dos conjuntos de datos diferentes.
edades1 se genera con función de aleatoriedad sample()
edades2 se genera con la función de distribución normal rnorm().
n <- 200
edades1 <- sample(x = 18:60,size = n,replace = TRUE )
Se identifican los datos edades1
edades1
## [1] 28 21 20 22 60 49 56 25 49 54 29 24 21 53 26 19 36 51 21 53 26 48 51 50 20
## [26] 25 47 20 31 24 36 52 33 47 20 47 47 24 56 41 44 42 57 32 39 22 39 21 42 32
## [51] 51 23 34 30 21 55 21 26 27 38 36 43 23 43 32 25 51 54 35 50 40 24 40 35 19
## [76] 20 51 53 37 42 55 54 47 50 23 38 22 52 55 47 36 55 43 46 37 46 59 54 57 34
## [101] 43 38 30 24 40 37 49 53 33 30 51 30 57 42 26 44 54 54 33 43 18 56 19 25 39
## [126] 57 39 48 42 55 57 33 23 52 28 38 34 43 28 60 31 51 24 60 46 43 44 54 28 22
## [151] 48 56 24 55 46 54 51 47 19 54 53 47 47 59 36 27 34 26 33 54 35 55 58 58 44
## [176] 23 34 34 55 48 31 29 26 45 30 21 52 23 29 31 19 30 49 41 19 43 47 49 34 35
Se muestran las tablas de frecuencias del conjunto de datos edades1.
En las tablas de frecuencias se determina matemáticamente el número de clases, La opción matemáticamente más consistente es la conocida como regla de Sturges.
La solución de esta ecuación proporciona una regla práctica para obtener el número de clases.
\[ k=1+3.322*log10(n) \]
Siendo k el número de clases
log es la función logarítmica de base 10, log10()
y n el total de la muestra
El rango de clase de acuerdo a Sturges está dada por \[ h=\frac{max(datos) - min(datos)}{k} \]Siendo h el rango de cada clase y max(datos) - min(datos) el rango del total de los datos, es decir la diferencia entre límite superior menos límite inferior.
Existen otras formas de determinar el número de clases a utilizar, algunas más complejas, otras más simples.
Independientemente de la forma de cálculo seleccionada ya se Sturges, Scott o Freedman-Diaconis (FD), lo realmente importante es que la información mostrada en la tabla de frecuencia sea fácil de revisar, que no contenga un número excesivo de clases y que la información que en ella se refleja permita comprender cómo se presentan los datos en la población o de una muestra.
El número de clase de acuerdo par \(n=200\) de acuerdo a Sturges es:
k <- round(1+3.322 * log10(n))
k
## [1] 9
La amplitud h1 y h2 para cada conjunto de datos es igual a:
h = diff(range(edades1)) / k
h
## [1] 4.666667
tabla.edades1 <- fdt(x = edades1, breaks="Sturges")
tabla.edades1
## Class limits f rf rf(%) cf cf(%)
## [17.82,22.57) 23 0.12 11.5 23 11.5
## [22.57,27.33) 25 0.12 12.5 48 24.0
## [27.33,32.08) 20 0.10 10.0 68 34.0
## [32.08,36.83) 21 0.10 10.5 89 44.5
## [36.83,41.59) 16 0.08 8.0 105 52.5
## [41.59,46.34) 22 0.11 11.0 127 63.5
## [46.34,51.09) 30 0.15 15.0 157 78.5
## [51.09,55.85) 27 0.14 13.5 184 92.0
## [55.85,60.6) 16 0.08 8.0 200 100.0
Class limits significa el rango de cada clase
f significa la frecuencia, la suma de f debe ser el total de elementos.
rf significa frecuencia relativa la suma de todas las rf debe ser el 1
rf% significa el valor relativo pero en porcentaje, la suma de rf% debe ser el 100%
cf significa frecuencia acumulada
cf% significa frecuencia porcentual acumulada
hist(edades1, breaks = "Sturges" )
datos.edades1 <- data.frame(x = 1:length(edades1), edad= edades1)
ggplot(datos.edades1, aes(x=x, y=edad))+
geom_point() +
geom_hline(yintercept = mean(edades1), col='red') +
ggtitle(label = "Dispersión de edades1", subtitle = paste("media = ", mean(edades1)))
edades2 <- round(rnorm(n = n, mean = 30, sd = 5))
Se identifican los datos edades2
sort(edades2)
## [1] 19 19 20 21 21 21 21 21 21 22 22 22 22 23 23 23 24 24 24 24 24 24 24 24 24
## [26] 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27
## [51] 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 29 29 29 29 29
## [76] 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31
## [101] 31 31 31 31 31 31 31 31 31 31 31 31 31 32 32 32 32 32 32 32 32 32 32 32 32
## [126] 32 32 32 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
## [151] 33 33 33 34 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 36 36 36 36 36
## [176] 36 36 36 37 37 37 37 37 37 37 37 38 38 38 38 38 38 39 39 39 40 40 42 43 43
Se muestran las tablas de frecuencias del conjunto de datos edades2.
tabla.edades2 <- fdt(x = edades2, breaks="Sturges")
tabla.edades2
## Class limits f rf rf(%) cf cf(%)
## [18.81,21.546) 9 0.04 4.5 9 4.5
## [21.546,24.281) 16 0.08 8.0 25 12.5
## [24.281,27.017) 25 0.12 12.5 50 25.0
## [27.017,29.752) 35 0.17 17.5 85 42.5
## [29.752,32.488) 43 0.22 21.5 128 64.0
## [32.488,35.223) 42 0.21 21.0 170 85.0
## [35.223,37.959) 16 0.08 8.0 186 93.0
## [37.959,40.694) 11 0.06 5.5 197 98.5
## [40.694,43.43) 3 0.01 1.5 200 100.0
hist(edades2, breaks = "Sturges" )
datos.edades2 <- data.frame(x = 1:length(edades2), edad= edades2)
ggplot(datos.edades2, aes(x=x, y=edad))+
geom_point() +
geom_hline(yintercept = mean(edades2), col='red') +
ggtitle(label = "Dispersión de edades2", subtitle = paste("media = ", mean(edades2)))
Las medidas de dispersión varianza y desviación estándar miden el valor de dispersión de un conjunto de datos numéricos.
La dispersión significa que tanto los datos están alejados de la media, el valor de la desviación se compara con la media y se interpreta que tanto los valores distan del valor de la media.
media_edades1 <- mean(edades1)
media_edades2 <- mean(edades2)
media_edades1; media_edades2
## [1] 39.13
## [1] 30.43
\[ S^2 = \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1} \]
\[ S = \sqrt{S^{2}} \]
tabla.varianza.edades1 <- data.frame(x = edades1,
x_media = media_edades1,
xi.menos.media = edades1 - media_edades1,
xi.menos.media.cuad = (edades1 - media_edades1)^2)
tabla.varianza.edades1
## x x_media xi.menos.media xi.menos.media.cuad
## 1 28 39.13 -11.13 123.8769
## 2 21 39.13 -18.13 328.6969
## 3 20 39.13 -19.13 365.9569
## 4 22 39.13 -17.13 293.4369
## 5 60 39.13 20.87 435.5569
## 6 49 39.13 9.87 97.4169
## 7 56 39.13 16.87 284.5969
## 8 25 39.13 -14.13 199.6569
## 9 49 39.13 9.87 97.4169
## 10 54 39.13 14.87 221.1169
## 11 29 39.13 -10.13 102.6169
## 12 24 39.13 -15.13 228.9169
## 13 21 39.13 -18.13 328.6969
## 14 53 39.13 13.87 192.3769
## 15 26 39.13 -13.13 172.3969
## 16 19 39.13 -20.13 405.2169
## 17 36 39.13 -3.13 9.7969
## 18 51 39.13 11.87 140.8969
## 19 21 39.13 -18.13 328.6969
## 20 53 39.13 13.87 192.3769
## 21 26 39.13 -13.13 172.3969
## 22 48 39.13 8.87 78.6769
## 23 51 39.13 11.87 140.8969
## 24 50 39.13 10.87 118.1569
## 25 20 39.13 -19.13 365.9569
## 26 25 39.13 -14.13 199.6569
## 27 47 39.13 7.87 61.9369
## 28 20 39.13 -19.13 365.9569
## 29 31 39.13 -8.13 66.0969
## 30 24 39.13 -15.13 228.9169
## 31 36 39.13 -3.13 9.7969
## 32 52 39.13 12.87 165.6369
## 33 33 39.13 -6.13 37.5769
## 34 47 39.13 7.87 61.9369
## 35 20 39.13 -19.13 365.9569
## 36 47 39.13 7.87 61.9369
## 37 47 39.13 7.87 61.9369
## 38 24 39.13 -15.13 228.9169
## 39 56 39.13 16.87 284.5969
## 40 41 39.13 1.87 3.4969
## 41 44 39.13 4.87 23.7169
## 42 42 39.13 2.87 8.2369
## 43 57 39.13 17.87 319.3369
## 44 32 39.13 -7.13 50.8369
## 45 39 39.13 -0.13 0.0169
## 46 22 39.13 -17.13 293.4369
## 47 39 39.13 -0.13 0.0169
## 48 21 39.13 -18.13 328.6969
## 49 42 39.13 2.87 8.2369
## 50 32 39.13 -7.13 50.8369
## 51 51 39.13 11.87 140.8969
## 52 23 39.13 -16.13 260.1769
## 53 34 39.13 -5.13 26.3169
## 54 30 39.13 -9.13 83.3569
## 55 21 39.13 -18.13 328.6969
## 56 55 39.13 15.87 251.8569
## 57 21 39.13 -18.13 328.6969
## 58 26 39.13 -13.13 172.3969
## 59 27 39.13 -12.13 147.1369
## 60 38 39.13 -1.13 1.2769
## 61 36 39.13 -3.13 9.7969
## 62 43 39.13 3.87 14.9769
## 63 23 39.13 -16.13 260.1769
## 64 43 39.13 3.87 14.9769
## 65 32 39.13 -7.13 50.8369
## 66 25 39.13 -14.13 199.6569
## 67 51 39.13 11.87 140.8969
## 68 54 39.13 14.87 221.1169
## 69 35 39.13 -4.13 17.0569
## 70 50 39.13 10.87 118.1569
## 71 40 39.13 0.87 0.7569
## 72 24 39.13 -15.13 228.9169
## 73 40 39.13 0.87 0.7569
## 74 35 39.13 -4.13 17.0569
## 75 19 39.13 -20.13 405.2169
## 76 20 39.13 -19.13 365.9569
## 77 51 39.13 11.87 140.8969
## 78 53 39.13 13.87 192.3769
## 79 37 39.13 -2.13 4.5369
## 80 42 39.13 2.87 8.2369
## 81 55 39.13 15.87 251.8569
## 82 54 39.13 14.87 221.1169
## 83 47 39.13 7.87 61.9369
## 84 50 39.13 10.87 118.1569
## 85 23 39.13 -16.13 260.1769
## 86 38 39.13 -1.13 1.2769
## 87 22 39.13 -17.13 293.4369
## 88 52 39.13 12.87 165.6369
## 89 55 39.13 15.87 251.8569
## 90 47 39.13 7.87 61.9369
## 91 36 39.13 -3.13 9.7969
## 92 55 39.13 15.87 251.8569
## 93 43 39.13 3.87 14.9769
## 94 46 39.13 6.87 47.1969
## 95 37 39.13 -2.13 4.5369
## 96 46 39.13 6.87 47.1969
## 97 59 39.13 19.87 394.8169
## 98 54 39.13 14.87 221.1169
## 99 57 39.13 17.87 319.3369
## 100 34 39.13 -5.13 26.3169
## 101 43 39.13 3.87 14.9769
## 102 38 39.13 -1.13 1.2769
## 103 30 39.13 -9.13 83.3569
## 104 24 39.13 -15.13 228.9169
## 105 40 39.13 0.87 0.7569
## 106 37 39.13 -2.13 4.5369
## 107 49 39.13 9.87 97.4169
## 108 53 39.13 13.87 192.3769
## 109 33 39.13 -6.13 37.5769
## 110 30 39.13 -9.13 83.3569
## 111 51 39.13 11.87 140.8969
## 112 30 39.13 -9.13 83.3569
## 113 57 39.13 17.87 319.3369
## 114 42 39.13 2.87 8.2369
## 115 26 39.13 -13.13 172.3969
## 116 44 39.13 4.87 23.7169
## 117 54 39.13 14.87 221.1169
## 118 54 39.13 14.87 221.1169
## 119 33 39.13 -6.13 37.5769
## 120 43 39.13 3.87 14.9769
## 121 18 39.13 -21.13 446.4769
## 122 56 39.13 16.87 284.5969
## 123 19 39.13 -20.13 405.2169
## 124 25 39.13 -14.13 199.6569
## 125 39 39.13 -0.13 0.0169
## 126 57 39.13 17.87 319.3369
## 127 39 39.13 -0.13 0.0169
## 128 48 39.13 8.87 78.6769
## 129 42 39.13 2.87 8.2369
## 130 55 39.13 15.87 251.8569
## 131 57 39.13 17.87 319.3369
## 132 33 39.13 -6.13 37.5769
## 133 23 39.13 -16.13 260.1769
## 134 52 39.13 12.87 165.6369
## 135 28 39.13 -11.13 123.8769
## 136 38 39.13 -1.13 1.2769
## 137 34 39.13 -5.13 26.3169
## 138 43 39.13 3.87 14.9769
## 139 28 39.13 -11.13 123.8769
## 140 60 39.13 20.87 435.5569
## 141 31 39.13 -8.13 66.0969
## 142 51 39.13 11.87 140.8969
## 143 24 39.13 -15.13 228.9169
## 144 60 39.13 20.87 435.5569
## 145 46 39.13 6.87 47.1969
## 146 43 39.13 3.87 14.9769
## 147 44 39.13 4.87 23.7169
## 148 54 39.13 14.87 221.1169
## 149 28 39.13 -11.13 123.8769
## 150 22 39.13 -17.13 293.4369
## 151 48 39.13 8.87 78.6769
## 152 56 39.13 16.87 284.5969
## 153 24 39.13 -15.13 228.9169
## 154 55 39.13 15.87 251.8569
## 155 46 39.13 6.87 47.1969
## 156 54 39.13 14.87 221.1169
## 157 51 39.13 11.87 140.8969
## 158 47 39.13 7.87 61.9369
## 159 19 39.13 -20.13 405.2169
## 160 54 39.13 14.87 221.1169
## 161 53 39.13 13.87 192.3769
## 162 47 39.13 7.87 61.9369
## 163 47 39.13 7.87 61.9369
## 164 59 39.13 19.87 394.8169
## 165 36 39.13 -3.13 9.7969
## 166 27 39.13 -12.13 147.1369
## 167 34 39.13 -5.13 26.3169
## 168 26 39.13 -13.13 172.3969
## 169 33 39.13 -6.13 37.5769
## 170 54 39.13 14.87 221.1169
## 171 35 39.13 -4.13 17.0569
## 172 55 39.13 15.87 251.8569
## 173 58 39.13 18.87 356.0769
## 174 58 39.13 18.87 356.0769
## 175 44 39.13 4.87 23.7169
## 176 23 39.13 -16.13 260.1769
## 177 34 39.13 -5.13 26.3169
## 178 34 39.13 -5.13 26.3169
## 179 55 39.13 15.87 251.8569
## 180 48 39.13 8.87 78.6769
## 181 31 39.13 -8.13 66.0969
## 182 29 39.13 -10.13 102.6169
## 183 26 39.13 -13.13 172.3969
## 184 45 39.13 5.87 34.4569
## 185 30 39.13 -9.13 83.3569
## 186 21 39.13 -18.13 328.6969
## 187 52 39.13 12.87 165.6369
## 188 23 39.13 -16.13 260.1769
## 189 29 39.13 -10.13 102.6169
## 190 31 39.13 -8.13 66.0969
## 191 19 39.13 -20.13 405.2169
## 192 30 39.13 -9.13 83.3569
## 193 49 39.13 9.87 97.4169
## 194 41 39.13 1.87 3.4969
## 195 19 39.13 -20.13 405.2169
## 196 43 39.13 3.87 14.9769
## 197 47 39.13 7.87 61.9369
## 198 49 39.13 9.87 97.4169
## 199 34 39.13 -5.13 26.3169
## 200 35 39.13 -4.13 17.0569
Calculando la suma y determinando varianza
n <- length(edades1)
suma <- sum(tabla.varianza.edades1$xi.menos.media.cuad)
suma
## [1] 30486.62
varianza <- suma / (n -1)
varianza
## [1] 153.1991
Con las funciones de var() y sd() se determinan la varianza y a desviación respectivamente y con mean() la media de la muestra.
varianza_edades1 <- var(edades1)
varianza_edades2 <- var(edades2)
desv.std_edades1 <- sd(edades1)
desv.std_edades2 <- sd(edades2)
Se muestran los valores generados, el punto y coma en R significa en una misma linea se ejecutan dos instrucciones o dos comandos, en este caso solo mostrar los valores.
varianza_edades1; varianza_edades2
## [1] 153.1991
## [1] 23.24131
desv.std_edades1; desv.std_edades2
## [1] 12.37736
## [1] 4.820924
El coeficiente de variación (CV) es un estadístico que permite comparar entre dos o mas conjuntos de datos cuál es estos tiene una dispersión mayor o menor.
Al identificar el CV de un conjunto de datos y compararlo con otro CV de otro conjunto de datos similares, se puede determinar cual de los datos tiene mayor o menor dispersión y se puede concluir en cual es estos está mas dispersos sus datos, es decir cuál de ellos se aleja mas o menos de la media, según sea el caso.
Para determinar el coeficiente de variación se establece la división de la desviación estándar entre la media del conjunto de datos.
\[ CV = \frac{\sigma}{\bar{x}} \]
CV_edades1 <- desv.std_edades1 / media_edades1
CV_edades1
## [1] 0.3163139
CV_edades2 <- desv.std_edades2 / media_edades2
CV_edades2
## [1] 0.1584267
¿Qué representan las tablas de frecuencias para los datos edades?
Las tablas de frecuencia representan las clases y la frecuencias de casos de cada una de las clases, permiten observar los valores relativos y porcentuales de las frecuencias.
Respecto a edades1 hay una cantidad de valores entre 46.34 y 51.09 que reprecentan un 15% del total de frecuencia
En relación a edades2 existe una cantidad de valores entre 29.752 y 32.488 que representan el 21.5%.
¿Cuáles son los valores media y desviación de los conjuntos de datos edades?
Con respecto a los valores estadísticos del conjunto de datos edades1, el valor la media es de: 39.13, la desviación es de: 12.3773622.
Con respecto a los valores estadísticos del conjunto de datos edades2, el valor la media es de: 30.43, la desviación es de: 4.8209238.
¿Cuáles son los valores de coeficiente de variación para los conjuntos de datos edades y que representan?
El coeficiente de variación de edades1 es de: 0.3163139y el coeficiente de variación de edades2 es de: 0.1584267
Existe mayor dispersión en los valores del conjunto de datos edades1 con respecto a edades2 por tener ligeramente mayor valor en su coeficiente de variación.
Por lo que nos podemos dar cuenta de que existe en este caso una mayor dispersión entre los datos de edades1 en relación con la dispersión de los datos de edades2 estando más cercanos a la media los últimos .