#create a county FIPS code - 5 digitsa_acs$county<-substr(sa_acs$GEOID, 1, 5)#rename variables and filter missing casessa_acs2<-sa_acs%>%mutate(totpop= DP05_0001E, ppov=DP03_0119PE) %>%# st_transform(crs = 102740)%>%na.omit()
#identify coordinate systemst_crs(sa_acs2)
Coordinate Reference System:
User input: NAD83
wkt:
GEOGCRS["NAD83",
DATUM["North American Datum 1983",
ELLIPSOID["GRS 1980",6378137,298.257222101,
LENGTHUNIT["metre",1]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],
CS[ellipsoidal,2],
AXIS["latitude",north,
ORDER[1],
ANGLEUNIT["degree",0.0174532925199433]],
AXIS["longitude",east,
ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],
ID["EPSG",4269]]
library(tmap)library(tmaptools)tm_shape(sa_acs2)+tm_polygons("ppov", title="% in Poverty",palette="Blues",style="quantile",n=5 )+tm_format("World",main.title="San Antonio Poverty Estimates (2019) - Quintile Breaks",main.title.position=c('center','top'),main.title.size=1.5,title="Author: R.Luttinen \nSource: ACS 2019",legend.title.size=1.7,legend.outside=T,legend.text.size=1.2)+tm_scale_bar(position =c("left","bottom"))+tm_compass()
#NAD83#Extract two tractstwtr<-sa_acs2%>%filter(GEOID %in%c(48029181820, 48029110600))# get centroid coordinates for two tracts (these two tracts are where UTSA Main and Downtown Campuses are)tr_co1<-st_centroid(twtr)
Warning in st_centroid.sf(twtr): st_centroid assumes attributes are constant
over geometries of x
head(tr_co1)
Simple feature collection with 2 features and 9 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -98.61502 ymin: 29.43017 xmax: -98.50751 ymax: 29.57909
Geodetic CRS: NAD83
GEOID NAME DP05_0001E DP05_0001M
1 48029181820 Census Tract 1818.20, Bexar County, Texas 8305 833
2 48029110600 Census Tract 1106, Bexar County, Texas 5293 423
DP03_0119PE DP03_0119PM geometry county totpop ppov
1 15.2 9.1 POINT (-98.61502 29.57909) 48029 8305 15.2
2 37.8 15.2 POINT (-98.50751 29.43017) 48029 5293 37.8
#Re-Project map into "Texas Centric Albers Equal Area" Projectionnew_sa<-st_transform(sa_acs2, crs =3083)#Extract two tractstwtr<-new_sa%>%filter(GEOID %in%c(48029181820, 48029110600))# get centroid coordinates for two tracts (these two tracts are where UTSA Main and Downtown Campuses are)tr_co<-st_centroid(twtr)
Warning in st_centroid.sf(twtr): st_centroid assumes attributes are constant
over geometries of x
head(tr_co)
Simple feature collection with 2 features and 9 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 1633963 ymin: 7257682 xmax: 1644584 ymax: 7274079
Projected CRS: NAD83 / Texas Centric Albers Equal Area
GEOID NAME DP05_0001E DP05_0001M
1 48029181820 Census Tract 1818.20, Bexar County, Texas 8305 833
2 48029110600 Census Tract 1106, Bexar County, Texas 5293 423
DP03_0119PE DP03_0119PM geometry county totpop ppov
1 15.2 9.1 POINT (1633963 7274079) 48029 8305 15.2
2 37.8 15.2 POINT (1644584 7257682) 48029 5293 37.8
st_distance(tr_co)
Units: [m]
1 2
1 0.00 19536.16
2 19536.16 0.00
#measure distance in in ftst_distance(tr_co)
Units: [m]
1 2
1 0.00 19536.16
2 19536.16 0.00
#convert to miles19536.16/1609
[1] 12.1418
#The difference between NAD83 and NAD83 Texas Centric Albers Equal Area yield slightly different but close results in distance. (12.14 vs. 12.15)
#It is important to have an accurate system of projection because inaccurate projections affect the size and shape of the map you’re trying to produce and can also give you the wrong distances between coordinates.