# file.choose()
titanic <- read.csv('titanic.csv')
str(titanic)
## 'data.frame':    1310 obs. of  14 variables:
##  $ ï..pclass: int  1 1 1 1 1 1 1 1 1 1 ...
##  $ survived : int  1 1 0 0 0 1 1 0 1 0 ...
##  $ name     : chr  "Allen, Miss. Elisabeth Walton" "Allison, Master. Hudson Trevor" "Allison, Miss. Helen Loraine" "Allison, Mr. Hudson Joshua Creighton" ...
##  $ sex      : chr  "female" "male" "female" "male" ...
##  $ age      : num  29 0.917 2 30 25 ...
##  $ sibsp    : int  0 1 1 1 1 0 1 0 2 0 ...
##  $ parch    : int  0 2 2 2 2 0 0 0 0 0 ...
##  $ ticket   : chr  "24160" "113781" "113781" "113781" ...
##  $ fare     : num  211 152 152 152 152 ...
##  $ cabin    : chr  "B5" "C22 C26" "C22 C26" "C22 C26" ...
##  $ embarked : chr  "S" "S" "S" "S" ...
##  $ boat     : chr  "2" "11" "" "" ...
##  $ body     : int  NA NA NA 135 NA NA NA NA NA 22 ...
##  $ home.dest: chr  "St Louis, MO" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" "Montreal, PQ / Chesterville, ON" ...

Filtrar base de datos

titanic <- dplyr::rename(titanic, pclass = 'ï..pclass')

Titanic <- titanic[,c('pclass','age','sex','survived')]
Titanic$survived <- as.factor(ifelse(Titanic$survived==0, 'Murio', 'Sobrevive'))
Titanic$pclass <- as.factor(Titanic$pclass)
Titanic$sex <- as.factor(Titanic$sex)
str(Titanic)
## 'data.frame':    1310 obs. of  4 variables:
##  $ pclass  : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
##  $ age     : num  29 0.917 2 30 25 ...
##  $ sex     : Factor w/ 3 levels "","female","male": 2 3 2 3 2 3 2 3 2 3 ...
##  $ survived: Factor w/ 2 levels "Murio","Sobrevive": 2 2 1 1 1 2 2 1 2 1 ...
sum(is.na(Titanic))
## [1] 266
sapply(Titanic, function(x) sum(is.na(x)))
##   pclass      age      sex survived 
##        1      264        0        1
Titanic <- na.omit(Titanic)
# Crear Arbol de Decision

library(rpart)
arbol <- rpart(formula=survived ~ ., data = Titanic)
arbol
## n= 1046 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1046 427 Murio (0.59177820 0.40822180)  
##    2) sex=male 658 135 Murio (0.79483283 0.20516717)  
##      4) age>=9.5 615 110 Murio (0.82113821 0.17886179) *
##      5) age< 9.5 43  18 Sobrevive (0.41860465 0.58139535)  
##       10) pclass=3 29  11 Murio (0.62068966 0.37931034) *
##       11) pclass=1,2 14   0 Sobrevive (0.00000000 1.00000000) *
##    3) sex=female 388  96 Sobrevive (0.24742268 0.75257732)  
##      6) pclass=3 152  72 Murio (0.52631579 0.47368421)  
##       12) age>=1.5 145  66 Murio (0.54482759 0.45517241) *
##       13) age< 1.5 7   1 Sobrevive (0.14285714 0.85714286) *
##      7) pclass=1,2 236  16 Sobrevive (0.06779661 0.93220339) *
library(rpart.plot)
rpart.plot(arbol)

prp(arbol,extra = 7, prefix = "fraccion")

Conclusiones

  1. Las más altas probabilidades de sobrevivir en el Titanic son niño varón menor de 9.5 años de 1° y 2° clase (100%) , y mujeres en 1° y 2° Clase (93%).
  2. Las más bajas probabilidades de sobrevivir en el Titanic son los hombres mayores de 9.5 años (18%) y los hombres menores de 9.5 años en 3° clase (38%).
LS0tDQp0aXRsZTogIlRpdGFuaWMiDQphdXRob3I6ICJYaW1lbmEgU29sw61zIC0gQTAwODMxMzcxIg0KZGF0ZTogIjIwMjMtMDItMTQiDQpvdXRwdXQ6IA0KIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2Zsb2F0OiB0cnVlDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQ0KYGBgDQoNCiFbXShDOlxVc2Vyc1x4c2lfc1xEb3dubG9hZHNcdGl0YW5pYy5wbmcpe3dpZHRoPTE1MHB4LCBoZWlnaHQ9MTUwcHh9DQoNCg0KYGBge3J9DQojIGZpbGUuY2hvb3NlKCkNCnRpdGFuaWMgPC0gcmVhZC5jc3YoJ3RpdGFuaWMuY3N2JykNCnN0cih0aXRhbmljKQ0KYGBgDQoNCiMjIEZpbHRyYXIgYmFzZSBkZSBkYXRvcw0KDQpgYGB7ciwgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkoZHBseXIpDQpgYGANCg0KDQpgYGB7cn0NCnRpdGFuaWMgPC0gZHBseXI6OnJlbmFtZSh0aXRhbmljLCBwY2xhc3MgPSAnw68uLnBjbGFzcycpDQoNClRpdGFuaWMgPC0gdGl0YW5pY1ssYygncGNsYXNzJywnYWdlJywnc2V4Jywnc3Vydml2ZWQnKV0NClRpdGFuaWMkc3Vydml2ZWQgPC0gYXMuZmFjdG9yKGlmZWxzZShUaXRhbmljJHN1cnZpdmVkPT0wLCAnTXVyaW8nLCAnU29icmV2aXZlJykpDQpUaXRhbmljJHBjbGFzcyA8LSBhcy5mYWN0b3IoVGl0YW5pYyRwY2xhc3MpDQpUaXRhbmljJHNleCA8LSBhcy5mYWN0b3IoVGl0YW5pYyRzZXgpDQpzdHIoVGl0YW5pYykNCnN1bShpcy5uYShUaXRhbmljKSkNCg0Kc2FwcGx5KFRpdGFuaWMsIGZ1bmN0aW9uKHgpIHN1bShpcy5uYSh4KSkpDQpUaXRhbmljIDwtIG5hLm9taXQoVGl0YW5pYykNCmBgYA0KDQoNCmBgYHtyfQ0KIyBDcmVhciBBcmJvbCBkZSBEZWNpc2lvbg0KDQpsaWJyYXJ5KHJwYXJ0KQ0KYXJib2wgPC0gcnBhcnQoZm9ybXVsYT1zdXJ2aXZlZCB+IC4sIGRhdGEgPSBUaXRhbmljKQ0KYXJib2wNCg0KbGlicmFyeShycGFydC5wbG90KQ0KcnBhcnQucGxvdChhcmJvbCkNCg0KcHJwKGFyYm9sLGV4dHJhID0gNywgcHJlZml4ID3CoCJmcmFjY2lvbiIpDQoNCmBgYA0KDQoNCg0KIyMgQ29uY2x1c2lvbmVzDQoNCjEuIExhcyBtw6FzIGFsdGFzIHByb2JhYmlsaWRhZGVzIGRlIHNvYnJldml2aXIgZW4gZWwgVGl0YW5pYyBzb24gbmnDsW8gdmFyw7NuIG1lbm9yIGRlIDkuNSBhw7FvcyBkZSAxwrAgeSAywrAgY2xhc2UgKDEwMCUpICwgeSBtdWplcmVzIGVuIDHCsCB5IDLCsMKgQ2xhc2XCoCg5MyUpLiAgDQoyLiBMYXMgbcOhcyBiYWphcyBwcm9iYWJpbGlkYWRlcyBkZSBzb2JyZXZpdmlyIGVuIGVsIFRpdGFuaWMgc29uIGxvcyBob21icmVzIG1heW9yZXMgZGUgOS41IGHDsW9zICgxOCUpIHkgbG9zIGhvbWJyZXMgbWVub3JlcyBkZSA5LjUgYcOxb3MgZW4gM8KwIGNsYXNlICgzOCUpLg0KDQoNCg==