library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0 ✔ purrr 1.0.1
## ✔ tibble 3.1.8 ✔ dplyr 1.1.0
## ✔ tidyr 1.3.0 ✔ stringr 1.5.0
## ✔ readr 2.1.3 ✔ forcats 1.0.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
#tinytex::install_tinytex()
library(tinytex)
setwd("C:/Users/Upsta/OneDrive/R Programming")
hatecrimes <- read_csv("hateCrimes2010.csv")
## Rows: 423 Columns: 44
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): County, Crime Type
## dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
str(hatecrimes)
## spc_tbl_ [423 × 44] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ county : chr [1:423] "Albany" "Albany" "Allegany" "Bronx" ...
## $ year : num [1:423] 2016 2016 2016 2016 2016 ...
## $ crimetype : chr [1:423] "Crimes Against Persons" "Property Crimes" "Property Crimes" "Crimes Against Persons" ...
## $ anti-male : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-female : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-transgender : num [1:423] 0 0 0 4 0 0 0 0 0 0 ...
## $ anti-genderidentityexpression : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-age* : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-white : num [1:423] 0 0 0 1 1 0 0 0 0 0 ...
## $ anti-black : num [1:423] 1 2 1 0 0 1 0 1 0 2 ...
## $ anti-americanindian/alaskannative : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-asian : num [1:423] 0 0 0 0 0 1 0 0 0 0 ...
## $ anti-nativehawaiian/pacificislander : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-multi-racialgroups : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherrace : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-jewish : num [1:423] 0 0 0 0 1 0 1 0 0 0 ...
## $ anti-catholic : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-protestant : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-islamic(muslim) : num [1:423] 1 0 0 6 0 0 0 0 1 0 ...
## $ anti-multi-religiousgroups : num [1:423] 0 1 0 0 0 0 0 0 0 0 ...
## $ anti-atheism/agnosticism : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-religiouspracticegenerally : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherreligion : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-buddhist : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-easternorthodox(greek,russian,etc.): num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-hindu : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-jehovahswitness : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-mormon : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherchristian : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-sikh : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-hispanic : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-arab : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-otherethnicity/nationalorigin : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-non-hispanic* : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-gaymale : num [1:423] 1 0 0 8 0 1 0 0 0 0 ...
## $ anti-gayfemale : num [1:423] 0 0 0 1 0 0 0 0 0 0 ...
## $ anti-gay(maleandfemale) : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-heterosexual : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-bisexual : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-physicaldisability : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ anti-mentaldisability : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
## $ totalincidents : num [1:423] 3 3 1 20 2 3 1 1 1 2 ...
## $ totalvictims : num [1:423] 4 3 1 20 2 3 1 1 1 2 ...
## $ totaloffenders : num [1:423] 3 3 1 25 2 3 1 1 1 2 ...
## - attr(*, "spec")=
## .. cols(
## .. County = col_character(),
## .. Year = col_double(),
## .. `Crime Type` = col_character(),
## .. `Anti-Male` = col_double(),
## .. `Anti-Female` = col_double(),
## .. `Anti-Transgender` = col_double(),
## .. `Anti-Gender Identity Expression` = col_double(),
## .. `Anti-Age*` = col_double(),
## .. `Anti-White` = col_double(),
## .. `Anti-Black` = col_double(),
## .. `Anti-American Indian/Alaskan Native` = col_double(),
## .. `Anti-Asian` = col_double(),
## .. `Anti-Native Hawaiian/Pacific Islander` = col_double(),
## .. `Anti-Multi-Racial Groups` = col_double(),
## .. `Anti-Other Race` = col_double(),
## .. `Anti-Jewish` = col_double(),
## .. `Anti-Catholic` = col_double(),
## .. `Anti-Protestant` = col_double(),
## .. `Anti-Islamic (Muslim)` = col_double(),
## .. `Anti-Multi-Religious Groups` = col_double(),
## .. `Anti-Atheism/Agnosticism` = col_double(),
## .. `Anti-Religious Practice Generally` = col_double(),
## .. `Anti-Other Religion` = col_double(),
## .. `Anti-Buddhist` = col_double(),
## .. `Anti-Eastern Orthodox (Greek, Russian, etc.)` = col_double(),
## .. `Anti-Hindu` = col_double(),
## .. `Anti-Jehovahs Witness` = col_double(),
## .. `Anti-Mormon` = col_double(),
## .. `Anti-Other Christian` = col_double(),
## .. `Anti-Sikh` = col_double(),
## .. `Anti-Hispanic` = col_double(),
## .. `Anti-Arab` = col_double(),
## .. `Anti-Other Ethnicity/National Origin` = col_double(),
## .. `Anti-Non-Hispanic*` = col_double(),
## .. `Anti-Gay Male` = col_double(),
## .. `Anti-Gay Female` = col_double(),
## .. `Anti-Gay (Male and Female)` = col_double(),
## .. `Anti-Heterosexual` = col_double(),
## .. `Anti-Bisexual` = col_double(),
## .. `Anti-Physical Disability` = col_double(),
## .. `Anti-Mental Disability` = col_double(),
## .. `Total Incidents` = col_double(),
## .. `Total Victims` = col_double(),
## .. `Total Offenders` = col_double()
## .. )
## - attr(*, "problems")=<externalptr>
hatecrimes2 <- hatecrimes %>%
select(county, year, 'anti-black', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', 'anti-gaymale', 'anti-hispanic') %>%
group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 × 10
## # Groups: county, year [4]
## county year anti-…¹ anti-…² anti-…³ anti-…⁴ anti-…⁵ anti-…⁶ anti-…⁷ anti-…⁸
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Albany 2016 1 0 0 0 0 1 1 0
## 2 Albany 2016 2 0 0 0 0 0 0 0
## 3 Allegany 2016 1 0 0 0 0 0 0 0
## 4 Bronx 2016 0 1 0 0 0 6 8 0
## 5 Bronx 2016 0 1 1 0 0 0 0 0
## 6 Broome 2016 1 0 0 0 0 0 1 0
## # … with abbreviated variable names ¹`anti-black`, ²`anti-white`,
## # ³`anti-jewish`, ⁴`anti-catholic`, ⁵`anti-age*`, ⁶`anti-islamic(muslim)`,
## # ⁷`anti-gaymale`, ⁸`anti-hispanic`
dim(hatecrimes2)
## [1] 423 10
# There are currently 13 variables with 423 rows.
summary(hatecrimes2)
## county year anti-black anti-white
## Length:423 Min. :2010 Min. : 0.000 Min. : 0.0000
## Class :character 1st Qu.:2011 1st Qu.: 0.000 1st Qu.: 0.0000
## Mode :character Median :2013 Median : 1.000 Median : 0.0000
## Mean :2013 Mean : 1.761 Mean : 0.3357
## 3rd Qu.:2015 3rd Qu.: 2.000 3rd Qu.: 0.0000
## Max. :2016 Max. :18.000 Max. :11.0000
## anti-jewish anti-catholic anti-age* anti-islamic(muslim)
## Min. : 0.000 Min. : 0.0000 Min. :0.00000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.:0.00000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000 Median :0.00000 Median : 0.0000
## Mean : 3.981 Mean : 0.2695 Mean :0.05201 Mean : 0.4704
## 3rd Qu.: 3.000 3rd Qu.: 0.0000 3rd Qu.:0.00000 3rd Qu.: 0.0000
## Max. :82.000 Max. :12.0000 Max. :9.00000 Max. :10.0000
## anti-gaymale anti-hispanic
## Min. : 0.000 Min. : 0.0000
## 1st Qu.: 0.000 1st Qu.: 0.0000
## Median : 0.000 Median : 0.0000
## Mean : 1.499 Mean : 0.3735
## 3rd Qu.: 1.000 3rd Qu.: 0.0000
## Max. :36.000 Max. :17.0000
hatecrimeslong <- hatecrimes2 %>%
tidyr::gather("id", "crimecount", 3:10)
hatecrimesplot <-hatecrimeslong %>%
ggplot(., aes(year, crimecount))+
geom_point()+
aes(color = id)+
facet_wrap(~id)
hatecrimesplot
hatenew <- hatecrimeslong %>%
filter( id== "anti-black" | id == "anti-jewish" | id == "anti-gaymale")%>%
group_by(year, county) %>%
arrange(desc(crimecount))
hatenew
## # A tibble: 1,269 × 4
## # Groups: year, county [277]
## county year id crimecount
## <chr> <dbl> <chr> <dbl>
## 1 Kings 2012 anti-jewish 82
## 2 Kings 2016 anti-jewish 51
## 3 Suffolk 2014 anti-jewish 48
## 4 Suffolk 2012 anti-jewish 48
## 5 Kings 2011 anti-jewish 44
## 6 Kings 2013 anti-jewish 41
## 7 Kings 2010 anti-jewish 39
## 8 Nassau 2011 anti-jewish 38
## 9 Suffolk 2013 anti-jewish 37
## 10 Nassau 2016 anti-jewish 36
## # … with 1,259 more rows
plot2 <- hatenew %>%
ggplot() +
geom_bar(aes(x=year, y=crimecount, fill = id),
position = "dodge", stat = "identity") +
ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
ylab("Number of Hate Crime Incidents") +
labs(fill = "Hate Crime Type")
plot2
plot3 <- hatenew %>%
ggplot() +
geom_bar(aes(x=county, y=crimecount, fill = id),
position = "dodge", stat = "identity") +
ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
ylab("Number of Hate Crime Incidents") +
labs(fill = "Hate Crime Type")
plot3
counties <- hatenew %>%
group_by(county, year)%>%
summarize(sum = sum(crimecount)) %>%
arrange(desc(sum))
## `summarise()` has grouped output by 'county'. You can override using the
## `.groups` argument.
plot4 <- hatenew %>%
filter(county =="Kings" | county =="New York" | county == "Suffolk" | county == "Nassau" | county == "Queens") %>%
ggplot() +
geom_bar(aes(x=county, y=crimecount, fill = id),
position = "dodge", stat = "identity") +
labs(ylab = "Number of Hate Crime Incidents",
title = "5 Counties in NY with Highest Incidents of Hate Crimes",
subtitle = "Between 2010-2016",
fill = "Hate Crime Type")
plot4
setwd("C:/Users/Upsta/OneDrive/R Programming")
nypop <- read_csv("newyorkpopulation.csv")
## Rows: 62 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Geography
## dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop %>%
rename(county = Geography) %>%
gather("year", "population", 2:8)
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 × 3
## county year population
## <chr> <dbl> <dbl>
## 1 Albany , New York 2010 304078
## 2 Allegany , New York 2010 48949
## 3 Bronx , New York 2010 1388240
## 4 Broome , New York 2010 200469
## 5 Cattaraugus , New York 2010 80249
## 6 Cayuga , New York 2010 79844
nypoplong12 <- nypoplong %>%
filter(year == 2012) %>%
arrange(desc(population)) %>%
head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
## # A tibble: 10 × 3
## county year population
## <chr> <dbl> <dbl>
## 1 Kings 2012 2572282
## 2 Queens 2012 2278024
## 3 New York 2012 1625121
## 4 Suffolk 2012 1499382
## 5 Bronx 2012 1414774
## 6 Nassau 2012 1350748
## 7 Westchester 2012 961073
## 8 Erie 2012 920792
## 9 Monroe 2012 748947
## 10 Richmond 2012 470978
counties12 <- counties %>%
filter(year == 2012) %>%
arrange(desc(sum))
counties12
## # A tibble: 41 × 3
## # Groups: county [41]
## county year sum
## <chr> <dbl> <dbl>
## 1 Kings 2012 136
## 2 Suffolk 2012 83
## 3 New York 2012 71
## 4 Nassau 2012 48
## 5 Queens 2012 48
## 6 Erie 2012 28
## 7 Bronx 2012 23
## 8 Richmond 2012 18
## 9 Multiple 2012 14
## 10 Westchester 2012 13
## # … with 31 more rows
datajoin <- counties12 %>%
full_join(nypoplong12, by=c("county", "year"))
datajoin
## # A tibble: 41 × 4
## # Groups: county [41]
## county year sum population
## <chr> <dbl> <dbl> <dbl>
## 1 Kings 2012 136 2572282
## 2 Suffolk 2012 83 1499382
## 3 New York 2012 71 1625121
## 4 Nassau 2012 48 1350748
## 5 Queens 2012 48 2278024
## 6 Erie 2012 28 920792
## 7 Bronx 2012 23 1414774
## 8 Richmond 2012 18 470978
## 9 Multiple 2012 14 NA
## 10 Westchester 2012 13 961073
## # … with 31 more rows
datajoinrate <- datajoin %>%
mutate(rate = sum/population*100000) %>%
arrange(desc(rate))
datajoinrate
## # A tibble: 41 × 5
## # Groups: county [41]
## county year sum population rate
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Suffolk 2012 83 1499382 5.54
## 2 Kings 2012 136 2572282 5.29
## 3 New York 2012 71 1625121 4.37
## 4 Richmond 2012 18 470978 3.82
## 5 Nassau 2012 48 1350748 3.55
## 6 Erie 2012 28 920792 3.04
## 7 Queens 2012 48 2278024 2.11
## 8 Bronx 2012 23 1414774 1.63
## 9 Westchester 2012 13 961073 1.35
## 10 Monroe 2012 5 748947 0.668
## # … with 31 more rows
dt <- datajoinrate[,c("county","rate")]
dt
## # A tibble: 41 × 2
## # Groups: county [41]
## county rate
## <chr> <dbl>
## 1 Suffolk 5.54
## 2 Kings 5.29
## 3 New York 4.37
## 4 Richmond 3.82
## 5 Nassau 3.55
## 6 Erie 3.04
## 7 Queens 2.11
## 8 Bronx 1.63
## 9 Westchester 1.35
## 10 Monroe 0.668
## # … with 31 more rows
aggregategroups <- hatecrimes %>%
tidyr::gather("id", "crimecount", 4:44)
unique(aggregategroups$id)
## [1] "anti-male"
## [2] "anti-female"
## [3] "anti-transgender"
## [4] "anti-genderidentityexpression"
## [5] "anti-age*"
## [6] "anti-white"
## [7] "anti-black"
## [8] "anti-americanindian/alaskannative"
## [9] "anti-asian"
## [10] "anti-nativehawaiian/pacificislander"
## [11] "anti-multi-racialgroups"
## [12] "anti-otherrace"
## [13] "anti-jewish"
## [14] "anti-catholic"
## [15] "anti-protestant"
## [16] "anti-islamic(muslim)"
## [17] "anti-multi-religiousgroups"
## [18] "anti-atheism/agnosticism"
## [19] "anti-religiouspracticegenerally"
## [20] "anti-otherreligion"
## [21] "anti-buddhist"
## [22] "anti-easternorthodox(greek,russian,etc.)"
## [23] "anti-hindu"
## [24] "anti-jehovahswitness"
## [25] "anti-mormon"
## [26] "anti-otherchristian"
## [27] "anti-sikh"
## [28] "anti-hispanic"
## [29] "anti-arab"
## [30] "anti-otherethnicity/nationalorigin"
## [31] "anti-non-hispanic*"
## [32] "anti-gaymale"
## [33] "anti-gayfemale"
## [34] "anti-gay(maleandfemale)"
## [35] "anti-heterosexual"
## [36] "anti-bisexual"
## [37] "anti-physicaldisability"
## [38] "anti-mentaldisability"
## [39] "totalincidents"
## [40] "totalvictims"
## [41] "totaloffenders"
aggregategroups <- aggregategroups %>%
mutate(group = case_when(
id %in% c("anti-transgender", "anti-gayfemale", "anti-genderidendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual") ~ "anti-lgbtq",
id %in% c("anti-multi-racialgroups", "anti-jewish", "anti-protestant", "anti-multi-religousgroups", "anti-religiouspracticegenerally", "anti-buddhist", "anti-hindu", "anti-mormon", "anti-sikh", "anti-catholic", "anti-islamic(muslim)", "anti-atheism/agnosticism", "anti-otherreligion", "anti-easternorthodox(greek,russian,etc.)", "anti-jehovahswitness", "anti-otherchristian") ~ "anti-religion",
id %in% c("anti-asian", "anti-arab", "anti-non-hispanic", "anti-white", "anti-americanindian/alaskannative", "anti-nativehawaiian/pacificislander", "anti-otherrace", "anti-hispanic", "anti-otherethnicity/nationalorigin") ~ "anti-ethnicity",
id %in% c("anti-physicaldisability", "anti-mentaldisability") ~ "anti-disability",
id %in% c("anti-female", "anti-male") ~ "anti-gender",
TRUE ~ "others"))
aggregategroups
## # A tibble: 17,343 × 6
## county year crimetype id crimecount group
## <chr> <dbl> <chr> <chr> <dbl> <chr>
## 1 Albany 2016 Crimes Against Persons anti-male 0 anti-gender
## 2 Albany 2016 Property Crimes anti-male 0 anti-gender
## 3 Allegany 2016 Property Crimes anti-male 0 anti-gender
## 4 Bronx 2016 Crimes Against Persons anti-male 0 anti-gender
## 5 Bronx 2016 Property Crimes anti-male 0 anti-gender
## 6 Broome 2016 Crimes Against Persons anti-male 0 anti-gender
## 7 Cayuga 2016 Property Crimes anti-male 0 anti-gender
## 8 Chemung 2016 Crimes Against Persons anti-male 0 anti-gender
## 9 Chemung 2016 Property Crimes anti-male 0 anti-gender
## 10 Chenango 2016 Crimes Against Persons anti-male 0 anti-gender
## # … with 17,333 more rows
lgbtq <- hatecrimes %>%
tidyr::gather("id", "crimecount", 4:44) %>%
filter(id %in% c("anti-transgender", "anti-gayfemale", "anti-genderidendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual"))
lgbtq
## # A tibble: 1,692 × 5
## county year crimetype id crimecount
## <chr> <dbl> <chr> <chr> <dbl>
## 1 Albany 2016 Crimes Against Persons anti-transgender 0
## 2 Albany 2016 Property Crimes anti-transgender 0
## 3 Allegany 2016 Property Crimes anti-transgender 0
## 4 Bronx 2016 Crimes Against Persons anti-transgender 4
## 5 Bronx 2016 Property Crimes anti-transgender 0
## 6 Broome 2016 Crimes Against Persons anti-transgender 0
## 7 Cayuga 2016 Property Crimes anti-transgender 0
## 8 Chemung 2016 Crimes Against Persons anti-transgender 0
## 9 Chemung 2016 Property Crimes anti-transgender 0
## 10 Chenango 2016 Crimes Against Persons anti-transgender 0
## # … with 1,682 more rows
The hate crimes data set does a good job of categorizing many different varieties of hate crimes instead of putting them under one umbrella. It would be very easy to just collect data on any hate crime of any level of severity in any county against any one group of people and collect the data as “number of hate crimes” without giving any specifics, but the hate crimes data set does not fall into this trap. However, the way this data was collected draws serious concerns onto being able to conclude anything about the data. Because the data was not given a universal collection process or requirements across jurisdictions, each county that reported hate crimes had a different collection process and standards for what was considered a hate crime or not. This means that none of the data can really be used to compare the number of hate crimes in different areas due to the biases of each jurisdiction collecting the data. The pathways I would like to explore in this data set are comparing hate crimes against different religions, and looking at the different types of hate crimes, and seeing which groups were more likely to experience hate crimes of different severity. Now that I have gone through the tutorial, I would like to explore hate crime data sets from other parts of the United States to see if there are vast difference due to the data collection processes, or if the data ends up being very similar to this data set. I would also like to research into data involving the police deparments of different areas of New York to try and determine if there is any information that would lead to more or less arrest or reports of hate crimes in different areas that could affect the hate crimes data set.