So now we know there is possible bias in the dataset, what can we do with it?

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
## ✔ ggplot2 3.4.0     ✔ purrr   1.0.1
## ✔ tibble  3.1.8     ✔ dplyr   1.1.0
## ✔ tidyr   1.3.0     ✔ stringr 1.5.0
## ✔ readr   2.1.3     ✔ forcats 1.0.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
#tinytex::install_tinytex()
library(tinytex)
setwd("C:/Users/Upsta/OneDrive/R Programming")
hatecrimes <- read_csv("hateCrimes2010.csv")
## Rows: 423 Columns: 44
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): County, Crime Type
## dbl (42): Year, Anti-Male, Anti-Female, Anti-Transgender, Anti-Gender Identi...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean up the data

names(hatecrimes) <- tolower(names(hatecrimes))
names(hatecrimes) <- gsub(" ","",names(hatecrimes))
str(hatecrimes)
## spc_tbl_ [423 × 44] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ county                                  : chr [1:423] "Albany" "Albany" "Allegany" "Bronx" ...
##  $ year                                    : num [1:423] 2016 2016 2016 2016 2016 ...
##  $ crimetype                               : chr [1:423] "Crimes Against Persons" "Property Crimes" "Property Crimes" "Crimes Against Persons" ...
##  $ anti-male                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-female                             : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-transgender                        : num [1:423] 0 0 0 4 0 0 0 0 0 0 ...
##  $ anti-genderidentityexpression           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-age*                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-white                              : num [1:423] 0 0 0 1 1 0 0 0 0 0 ...
##  $ anti-black                              : num [1:423] 1 2 1 0 0 1 0 1 0 2 ...
##  $ anti-americanindian/alaskannative       : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-asian                              : num [1:423] 0 0 0 0 0 1 0 0 0 0 ...
##  $ anti-nativehawaiian/pacificislander     : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-multi-racialgroups                 : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherrace                          : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-jewish                             : num [1:423] 0 0 0 0 1 0 1 0 0 0 ...
##  $ anti-catholic                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-protestant                         : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-islamic(muslim)                    : num [1:423] 1 0 0 6 0 0 0 0 1 0 ...
##  $ anti-multi-religiousgroups              : num [1:423] 0 1 0 0 0 0 0 0 0 0 ...
##  $ anti-atheism/agnosticism                : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-religiouspracticegenerally         : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherreligion                      : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-buddhist                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-easternorthodox(greek,russian,etc.): num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-hindu                              : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-jehovahswitness                    : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-mormon                             : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherchristian                     : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-sikh                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-hispanic                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-arab                               : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-otherethnicity/nationalorigin      : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-non-hispanic*                      : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-gaymale                            : num [1:423] 1 0 0 8 0 1 0 0 0 0 ...
##  $ anti-gayfemale                          : num [1:423] 0 0 0 1 0 0 0 0 0 0 ...
##  $ anti-gay(maleandfemale)                 : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-heterosexual                       : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-bisexual                           : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-physicaldisability                 : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ anti-mentaldisability                   : num [1:423] 0 0 0 0 0 0 0 0 0 0 ...
##  $ totalincidents                          : num [1:423] 3 3 1 20 2 3 1 1 1 2 ...
##  $ totalvictims                            : num [1:423] 4 3 1 20 2 3 1 1 1 2 ...
##  $ totaloffenders                          : num [1:423] 3 3 1 25 2 3 1 1 1 2 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   County = col_character(),
##   ..   Year = col_double(),
##   ..   `Crime Type` = col_character(),
##   ..   `Anti-Male` = col_double(),
##   ..   `Anti-Female` = col_double(),
##   ..   `Anti-Transgender` = col_double(),
##   ..   `Anti-Gender Identity Expression` = col_double(),
##   ..   `Anti-Age*` = col_double(),
##   ..   `Anti-White` = col_double(),
##   ..   `Anti-Black` = col_double(),
##   ..   `Anti-American Indian/Alaskan Native` = col_double(),
##   ..   `Anti-Asian` = col_double(),
##   ..   `Anti-Native Hawaiian/Pacific Islander` = col_double(),
##   ..   `Anti-Multi-Racial Groups` = col_double(),
##   ..   `Anti-Other Race` = col_double(),
##   ..   `Anti-Jewish` = col_double(),
##   ..   `Anti-Catholic` = col_double(),
##   ..   `Anti-Protestant` = col_double(),
##   ..   `Anti-Islamic (Muslim)` = col_double(),
##   ..   `Anti-Multi-Religious Groups` = col_double(),
##   ..   `Anti-Atheism/Agnosticism` = col_double(),
##   ..   `Anti-Religious Practice Generally` = col_double(),
##   ..   `Anti-Other Religion` = col_double(),
##   ..   `Anti-Buddhist` = col_double(),
##   ..   `Anti-Eastern Orthodox (Greek, Russian, etc.)` = col_double(),
##   ..   `Anti-Hindu` = col_double(),
##   ..   `Anti-Jehovahs Witness` = col_double(),
##   ..   `Anti-Mormon` = col_double(),
##   ..   `Anti-Other Christian` = col_double(),
##   ..   `Anti-Sikh` = col_double(),
##   ..   `Anti-Hispanic` = col_double(),
##   ..   `Anti-Arab` = col_double(),
##   ..   `Anti-Other Ethnicity/National Origin` = col_double(),
##   ..   `Anti-Non-Hispanic*` = col_double(),
##   ..   `Anti-Gay Male` = col_double(),
##   ..   `Anti-Gay Female` = col_double(),
##   ..   `Anti-Gay (Male and Female)` = col_double(),
##   ..   `Anti-Heterosexual` = col_double(),
##   ..   `Anti-Bisexual` = col_double(),
##   ..   `Anti-Physical Disability` = col_double(),
##   ..   `Anti-Mental Disability` = col_double(),
##   ..   `Total Incidents` = col_double(),
##   ..   `Total Victims` = col_double(),
##   ..   `Total Offenders` = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>

Select only certain hate-crimes

hatecrimes2 <- hatecrimes %>% 
  select(county, year, 'anti-black', 'anti-white', 'anti-jewish', 'anti-catholic','anti-age*','anti-islamic(muslim)', 'anti-gaymale', 'anti-hispanic') %>%
  group_by(county, year)
head(hatecrimes2)
## # A tibble: 6 × 10
## # Groups:   county, year [4]
##   county    year anti-…¹ anti-…² anti-…³ anti-…⁴ anti-…⁵ anti-…⁶ anti-…⁷ anti-…⁸
##   <chr>    <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
## 1 Albany    2016       1       0       0       0       0       1       1       0
## 2 Albany    2016       2       0       0       0       0       0       0       0
## 3 Allegany  2016       1       0       0       0       0       0       0       0
## 4 Bronx     2016       0       1       0       0       0       6       8       0
## 5 Bronx     2016       0       1       1       0       0       0       0       0
## 6 Broome    2016       1       0       0       0       0       0       1       0
## # … with abbreviated variable names ¹​`anti-black`, ²​`anti-white`,
## #   ³​`anti-jewish`, ⁴​`anti-catholic`, ⁵​`anti-age*`, ⁶​`anti-islamic(muslim)`,
## #   ⁷​`anti-gaymale`, ⁸​`anti-hispanic`

Chech the dimensions and the summary to make sure no missing values

dim(hatecrimes2)
## [1] 423  10
# There are currently 13 variables with 423 rows.
summary(hatecrimes2)
##     county               year        anti-black       anti-white     
##  Length:423         Min.   :2010   Min.   : 0.000   Min.   : 0.0000  
##  Class :character   1st Qu.:2011   1st Qu.: 0.000   1st Qu.: 0.0000  
##  Mode  :character   Median :2013   Median : 1.000   Median : 0.0000  
##                     Mean   :2013   Mean   : 1.761   Mean   : 0.3357  
##                     3rd Qu.:2015   3rd Qu.: 2.000   3rd Qu.: 0.0000  
##                     Max.   :2016   Max.   :18.000   Max.   :11.0000  
##   anti-jewish     anti-catholic       anti-age*       anti-islamic(muslim)
##  Min.   : 0.000   Min.   : 0.0000   Min.   :0.00000   Min.   : 0.0000     
##  1st Qu.: 0.000   1st Qu.: 0.0000   1st Qu.:0.00000   1st Qu.: 0.0000     
##  Median : 0.000   Median : 0.0000   Median :0.00000   Median : 0.0000     
##  Mean   : 3.981   Mean   : 0.2695   Mean   :0.05201   Mean   : 0.4704     
##  3rd Qu.: 3.000   3rd Qu.: 0.0000   3rd Qu.:0.00000   3rd Qu.: 0.0000     
##  Max.   :82.000   Max.   :12.0000   Max.   :9.00000   Max.   :10.0000     
##   anti-gaymale    anti-hispanic    
##  Min.   : 0.000   Min.   : 0.0000  
##  1st Qu.: 0.000   1st Qu.: 0.0000  
##  Median : 0.000   Median : 0.0000  
##  Mean   : 1.499   Mean   : 0.3735  
##  3rd Qu.: 1.000   3rd Qu.: 0.0000  
##  Max.   :36.000   Max.   :17.0000

Use Facet_Wrap

hatecrimeslong <- hatecrimes2 %>% 
  tidyr::gather("id", "crimecount", 3:10) 

hatecrimesplot <-hatecrimeslong %>% 
  ggplot(., aes(year, crimecount))+
  geom_point()+
  aes(color = id)+
  facet_wrap(~id)
hatecrimesplot

Look deeper into crimes against blacks, gay males, and jews

hatenew <- hatecrimeslong %>%
  filter( id== "anti-black" | id == "anti-jewish" | id == "anti-gaymale")%>%
  group_by(year, county) %>%
  arrange(desc(crimecount))
hatenew
## # A tibble: 1,269 × 4
## # Groups:   year, county [277]
##    county   year id          crimecount
##    <chr>   <dbl> <chr>            <dbl>
##  1 Kings    2012 anti-jewish         82
##  2 Kings    2016 anti-jewish         51
##  3 Suffolk  2014 anti-jewish         48
##  4 Suffolk  2012 anti-jewish         48
##  5 Kings    2011 anti-jewish         44
##  6 Kings    2013 anti-jewish         41
##  7 Kings    2010 anti-jewish         39
##  8 Nassau   2011 anti-jewish         38
##  9 Suffolk  2013 anti-jewish         37
## 10 Nassau   2016 anti-jewish         36
## # … with 1,259 more rows

Plot these three types of hate crimes together

plot2 <- hatenew %>%
  ggplot() +
  geom_bar(aes(x=year, y=crimecount, fill = id),
      position = "dodge", stat = "identity") +
  ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
  ylab("Number of Hate Crime Incidents") + 
  labs(fill = "Hate Crime Type")
plot2

What about the counties?

plot3 <- hatenew %>%
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = id),
      position = "dodge", stat = "identity") +
  ggtitle("Hate Crime Type in NY Counties Between 2010-2016") +
  ylab("Number of Hate Crime Incidents") + 
  labs(fill = "Hate Crime Type")
plot3

So many counties

counties <- hatenew %>%
  group_by(county, year)%>%
  summarize(sum = sum(crimecount)) %>%
  arrange(desc(sum)) 
## `summarise()` has grouped output by 'county'. You can override using the
## `.groups` argument.
plot4 <- hatenew %>%
  filter(county =="Kings" | county =="New York" | county == "Suffolk" | county == "Nassau" | county == "Queens") %>%
  ggplot() +
  geom_bar(aes(x=county, y=crimecount, fill = id),
      position = "dodge", stat = "identity") +
  labs(ylab = "Number of Hate Crime Incidents",
    title = "5 Counties in NY with Highest Incidents of Hate Crimes",
    subtitle = "Between 2010-2016", 
    fill = "Hate Crime Type")
plot4

How would calculations be affected by looking at hate crimes in counties per year by population densities?

setwd("C:/Users/Upsta/OneDrive/R Programming")
nypop <- read_csv("newyorkpopulation.csv")
## Rows: 62 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Geography
## dbl (7): 2010, 2011, 2012, 2013, 2014, 2015, 2016
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Clean the county name to match the other dataset

nypop$Geography <- gsub(" , New York", "", nypop$Geography)
nypop$Geography <- gsub("County", "", nypop$Geography)
nypoplong <- nypop %>%
  rename(county = Geography) %>%
  gather("year", "population", 2:8) 
nypoplong$year <- as.double(nypoplong$year)
head(nypoplong)
## # A tibble: 6 × 3
##   county                  year population
##   <chr>                  <dbl>      <dbl>
## 1 Albany , New York       2010     304078
## 2 Allegany , New York     2010      48949
## 3 Bronx , New York        2010    1388240
## 4 Broome , New York       2010     200469
## 5 Cattaraugus , New York  2010      80249
## 6 Cayuga , New York       2010      79844

Focus on 2012

nypoplong12 <- nypoplong %>%
  filter(year == 2012) %>%
  arrange(desc(population)) %>%
  head(10)
nypoplong12$county<-gsub(" , New York","",nypoplong12$county)
nypoplong12
## # A tibble: 10 × 3
##    county       year population
##    <chr>       <dbl>      <dbl>
##  1 Kings        2012    2572282
##  2 Queens       2012    2278024
##  3 New York     2012    1625121
##  4 Suffolk      2012    1499382
##  5 Bronx        2012    1414774
##  6 Nassau       2012    1350748
##  7 Westchester  2012     961073
##  8 Erie         2012     920792
##  9 Monroe       2012     748947
## 10 Richmond     2012     470978

Filter hate crimes for 2012 as well

counties12 <- counties %>%
  filter(year == 2012) %>%
  arrange(desc(sum)) 
counties12
## # A tibble: 41 × 3
## # Groups:   county [41]
##    county       year   sum
##    <chr>       <dbl> <dbl>
##  1 Kings        2012   136
##  2 Suffolk      2012    83
##  3 New York     2012    71
##  4 Nassau       2012    48
##  5 Queens       2012    48
##  6 Erie         2012    28
##  7 Bronx        2012    23
##  8 Richmond     2012    18
##  9 Multiple     2012    14
## 10 Westchester  2012    13
## # … with 31 more rows

Join the Hate Crimes data with NY population data for 2012

datajoin <- counties12 %>%
  full_join(nypoplong12, by=c("county", "year"))
datajoin
## # A tibble: 41 × 4
## # Groups:   county [41]
##    county       year   sum population
##    <chr>       <dbl> <dbl>      <dbl>
##  1 Kings        2012   136    2572282
##  2 Suffolk      2012    83    1499382
##  3 New York     2012    71    1625121
##  4 Nassau       2012    48    1350748
##  5 Queens       2012    48    2278024
##  6 Erie         2012    28     920792
##  7 Bronx        2012    23    1414774
##  8 Richmond     2012    18     470978
##  9 Multiple     2012    14         NA
## 10 Westchester  2012    13     961073
## # … with 31 more rows

Calculate the range per 100,000. Then arrange in descending order

datajoinrate <- datajoin %>%
  mutate(rate = sum/population*100000) %>%
  arrange(desc(rate))
datajoinrate
## # A tibble: 41 × 5
## # Groups:   county [41]
##    county       year   sum population  rate
##    <chr>       <dbl> <dbl>      <dbl> <dbl>
##  1 Suffolk      2012    83    1499382 5.54 
##  2 Kings        2012   136    2572282 5.29 
##  3 New York     2012    71    1625121 4.37 
##  4 Richmond     2012    18     470978 3.82 
##  5 Nassau       2012    48    1350748 3.55 
##  6 Erie         2012    28     920792 3.04 
##  7 Queens       2012    48    2278024 2.11 
##  8 Bronx        2012    23    1414774 1.63 
##  9 Westchester  2012    13     961073 1.35 
## 10 Monroe       2012     5     748947 0.668
## # … with 31 more rows
dt <- datajoinrate[,c("county","rate")]
dt
## # A tibble: 41 × 2
## # Groups:   county [41]
##    county       rate
##    <chr>       <dbl>
##  1 Suffolk     5.54 
##  2 Kings       5.29 
##  3 New York    4.37 
##  4 Richmond    3.82 
##  5 Nassau      3.55 
##  6 Erie        3.04 
##  7 Queens      2.11 
##  8 Bronx       1.63 
##  9 Westchester 1.35 
## 10 Monroe      0.668
## # … with 31 more rows

Agrregating some of the categories

aggregategroups <- hatecrimes %>%
  tidyr::gather("id", "crimecount", 4:44) 
unique(aggregategroups$id)
##  [1] "anti-male"                               
##  [2] "anti-female"                             
##  [3] "anti-transgender"                        
##  [4] "anti-genderidentityexpression"           
##  [5] "anti-age*"                               
##  [6] "anti-white"                              
##  [7] "anti-black"                              
##  [8] "anti-americanindian/alaskannative"       
##  [9] "anti-asian"                              
## [10] "anti-nativehawaiian/pacificislander"     
## [11] "anti-multi-racialgroups"                 
## [12] "anti-otherrace"                          
## [13] "anti-jewish"                             
## [14] "anti-catholic"                           
## [15] "anti-protestant"                         
## [16] "anti-islamic(muslim)"                    
## [17] "anti-multi-religiousgroups"              
## [18] "anti-atheism/agnosticism"                
## [19] "anti-religiouspracticegenerally"         
## [20] "anti-otherreligion"                      
## [21] "anti-buddhist"                           
## [22] "anti-easternorthodox(greek,russian,etc.)"
## [23] "anti-hindu"                              
## [24] "anti-jehovahswitness"                    
## [25] "anti-mormon"                             
## [26] "anti-otherchristian"                     
## [27] "anti-sikh"                               
## [28] "anti-hispanic"                           
## [29] "anti-arab"                               
## [30] "anti-otherethnicity/nationalorigin"      
## [31] "anti-non-hispanic*"                      
## [32] "anti-gaymale"                            
## [33] "anti-gayfemale"                          
## [34] "anti-gay(maleandfemale)"                 
## [35] "anti-heterosexual"                       
## [36] "anti-bisexual"                           
## [37] "anti-physicaldisability"                 
## [38] "anti-mentaldisability"                   
## [39] "totalincidents"                          
## [40] "totalvictims"                            
## [41] "totaloffenders"
aggregategroups <- aggregategroups %>%
  mutate(group = case_when(
    id %in% c("anti-transgender", "anti-gayfemale", "anti-genderidendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual") ~ "anti-lgbtq",
    id %in% c("anti-multi-racialgroups", "anti-jewish", "anti-protestant", "anti-multi-religousgroups", "anti-religiouspracticegenerally", "anti-buddhist", "anti-hindu", "anti-mormon", "anti-sikh", "anti-catholic", "anti-islamic(muslim)", "anti-atheism/agnosticism", "anti-otherreligion", "anti-easternorthodox(greek,russian,etc.)", "anti-jehovahswitness", "anti-otherchristian") ~ "anti-religion", 
    id %in% c("anti-asian", "anti-arab", "anti-non-hispanic", "anti-white", "anti-americanindian/alaskannative", "anti-nativehawaiian/pacificislander", "anti-otherrace", "anti-hispanic", "anti-otherethnicity/nationalorigin") ~ "anti-ethnicity",
    id %in% c("anti-physicaldisability", "anti-mentaldisability") ~ "anti-disability",
    id %in% c("anti-female", "anti-male") ~ "anti-gender",
    TRUE ~ "others"))
aggregategroups
## # A tibble: 17,343 × 6
##    county    year crimetype              id        crimecount group      
##    <chr>    <dbl> <chr>                  <chr>          <dbl> <chr>      
##  1 Albany    2016 Crimes Against Persons anti-male          0 anti-gender
##  2 Albany    2016 Property Crimes        anti-male          0 anti-gender
##  3 Allegany  2016 Property Crimes        anti-male          0 anti-gender
##  4 Bronx     2016 Crimes Against Persons anti-male          0 anti-gender
##  5 Bronx     2016 Property Crimes        anti-male          0 anti-gender
##  6 Broome    2016 Crimes Against Persons anti-male          0 anti-gender
##  7 Cayuga    2016 Property Crimes        anti-male          0 anti-gender
##  8 Chemung   2016 Crimes Against Persons anti-male          0 anti-gender
##  9 Chemung   2016 Property Crimes        anti-male          0 anti-gender
## 10 Chenango  2016 Crimes Against Persons anti-male          0 anti-gender
## # … with 17,333 more rows
lgbtq <- hatecrimes %>%
   tidyr::gather("id", "crimecount", 4:44) %>%
  filter(id %in% c("anti-transgender", "anti-gayfemale", "anti-genderidendityexpression", "anti-gaymale", "anti-gay(maleandfemale", "anti-bisexual"))
lgbtq
## # A tibble: 1,692 × 5
##    county    year crimetype              id               crimecount
##    <chr>    <dbl> <chr>                  <chr>                 <dbl>
##  1 Albany    2016 Crimes Against Persons anti-transgender          0
##  2 Albany    2016 Property Crimes        anti-transgender          0
##  3 Allegany  2016 Property Crimes        anti-transgender          0
##  4 Bronx     2016 Crimes Against Persons anti-transgender          4
##  5 Bronx     2016 Property Crimes        anti-transgender          0
##  6 Broome    2016 Crimes Against Persons anti-transgender          0
##  7 Cayuga    2016 Property Crimes        anti-transgender          0
##  8 Chemung   2016 Crimes Against Persons anti-transgender          0
##  9 Chemung   2016 Property Crimes        anti-transgender          0
## 10 Chenango  2016 Crimes Against Persons anti-transgender          0
## # … with 1,682 more rows

Essay

The hate crimes data set does a good job of categorizing many different varieties of hate crimes instead of putting them under one umbrella. It would be very easy to just collect data on any hate crime of any level of severity in any county against any one group of people and collect the data as “number of hate crimes” without giving any specifics, but the hate crimes data set does not fall into this trap. However, the way this data was collected draws serious concerns onto being able to conclude anything about the data. Because the data was not given a universal collection process or requirements across jurisdictions, each county that reported hate crimes had a different collection process and standards for what was considered a hate crime or not. This means that none of the data can really be used to compare the number of hate crimes in different areas due to the biases of each jurisdiction collecting the data. The pathways I would like to explore in this data set are comparing hate crimes against different religions, and looking at the different types of hate crimes, and seeing which groups were more likely to experience hate crimes of different severity. Now that I have gone through the tutorial, I would like to explore hate crime data sets from other parts of the United States to see if there are vast difference due to the data collection processes, or if the data ends up being very similar to this data set. I would also like to research into data involving the police deparments of different areas of New York to try and determine if there is any information that would lead to more or less arrest or reports of hate crimes in different areas that could affect the hate crimes data set.