Some define statistics as the field that focuses on turning information into knowledge. The first step in that process is to summarize and describe the raw information – the data. In this lab we explore flights, specifically a random sample of domestic flights that departed from the three major New York City airports in 2013. We will generate simple graphical and numerical summaries of data on these flights and explore delay times. Since this is a large data set, along the way you’ll also learn the indispensable skills of data processing and subsetting.
In this lab, we will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro labs, openintro.
Let’s load the packages.
library(tidyverse)
library(openintro)The Bureau of Transportation Statistics (BTS) is a statistical agency that is a part of the Research and Innovative Technology Administration (RITA). As its name implies, BTS collects and makes transportation data available, such as the flights data we will be working with in this lab.
First, we’ll view the nycflights data frame. Type the
following in your console to load the data:
data(nycflights)The data set nycflights that shows up in your workspace
is a data matrix, with each row representing an
observation and each column representing a variable. R
calls this data format a data frame, which is a term
that will be used throughout the labs. For this data set, each
observation is a single flight.
To view the names of the variables, type the command
names(nycflights)## [1] "year" "month" "day" "dep_time" "dep_delay" "arr_time"
## [7] "arr_delay" "carrier" "tailnum" "flight" "origin" "dest"
## [13] "air_time" "distance" "hour" "minute"
This returns the names of the variables in this data frame. The codebook (description of the variables) can be accessed by pulling up the help file:
?nycflightsOne of the variables refers to the carrier (i.e. airline) of the flight, which is coded according to the following system.
carrier: Two letter carrier abbreviation.
9E: Endeavor Air Inc.AA: American Airlines Inc.AS: Alaska Airlines Inc.B6: JetBlue AirwaysDL: Delta Air Lines Inc.EV: ExpressJet Airlines Inc.F9: Frontier Airlines Inc.FL: AirTran Airways CorporationHA: Hawaiian Airlines Inc.MQ: Envoy AirOO: SkyWest Airlines Inc.UA: United Air Lines Inc.US: US Airways Inc.VX: Virgin AmericaWN: Southwest Airlines Co.YV: Mesa Airlines Inc.Remember that you can use glimpse to take a quick peek
at your data to understand its contents better.
glimpse(nycflights)## Rows: 32,735
## Columns: 16
## $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, …
## $ month <int> 6, 5, 12, 5, 7, 1, 12, 8, 9, 4, 6, 11, 4, 3, 10, 1, 2, 8, 10…
## $ day <int> 30, 7, 8, 14, 21, 1, 9, 13, 26, 30, 17, 22, 26, 25, 21, 23, …
## $ dep_time <int> 940, 1657, 859, 1841, 1102, 1817, 1259, 1920, 725, 1323, 940…
## $ dep_delay <dbl> 15, -3, -1, -4, -3, -3, 14, 85, -10, 62, 5, 5, -2, 115, -4, …
## $ arr_time <int> 1216, 2104, 1238, 2122, 1230, 2008, 1617, 2032, 1027, 1549, …
## $ arr_delay <dbl> -4, 10, 11, -34, -8, 3, 22, 71, -8, 60, -4, -2, 22, 91, -6, …
## $ carrier <chr> "VX", "DL", "DL", "DL", "9E", "AA", "WN", "B6", "AA", "EV", …
## $ tailnum <chr> "N626VA", "N3760C", "N712TW", "N914DL", "N823AY", "N3AXAA", …
## $ flight <int> 407, 329, 422, 2391, 3652, 353, 1428, 1407, 2279, 4162, 20, …
## $ origin <chr> "JFK", "JFK", "JFK", "JFK", "LGA", "LGA", "EWR", "JFK", "LGA…
## $ dest <chr> "LAX", "SJU", "LAX", "TPA", "ORF", "ORD", "HOU", "IAD", "MIA…
## $ air_time <dbl> 313, 216, 376, 135, 50, 138, 240, 48, 148, 110, 50, 161, 87,…
## $ distance <dbl> 2475, 1598, 2475, 1005, 296, 733, 1411, 228, 1096, 820, 264,…
## $ hour <dbl> 9, 16, 8, 18, 11, 18, 12, 19, 7, 13, 9, 13, 8, 20, 12, 20, 6…
## $ minute <dbl> 40, 57, 59, 41, 2, 17, 59, 20, 25, 23, 40, 20, 9, 54, 17, 24…
The nycflights data frame is a massive trove of
information. Let’s think about some questions we might want to answer
with these data:
Let’s start by examing the distribution of departure delays of all flights with a histogram.
library(ggplot2)
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram()This function says to plot the dep_delay variable from
the nycflights data frame on the x-axis. It also defines a
geom (short for geometric object), which describes the type
of plot you will produce.
Histograms are generally a very good way to see the shape of a single distribution of numerical data, but that shape can change depending on how the data is split between the different bins. You can easily define the binwidth you want to use:
ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 15)ggplot(data = nycflights, aes(x = dep_delay)) +
geom_histogram(binwidth = 150)the three histograms of the dep_delay variable will likely have different shapes and reveal different features, depending on the binwidth we are using.
With a smaller binwidth (binwidth = 15), the histogram will have more bins and provide a finer grained representation of the distribution. This can reveal more subtle patterns in the data. On the other hand, with a larger binwidth ( binwidth = 150), the histogram will have fewer bins and provide a coarser representation of the distribution. This can make it easier to see the overall shape and skewness of the data, but may obscure some of the details.
If you want to visualize only on delays of flights headed to Los
Angeles, you need to first filter the data for flights with
that destination (dest == "LAX") and then make a histogram
of the departure delays of only those flights.
lax_flights <- nycflights %>%
filter(dest == "LAX")
ggplot(data = lax_flights, aes(x = dep_delay)) +
geom_histogram()Let’s decipher these two commands (OK, so it might look like four
lines, but the first two physical lines of code are actually part of the
same command. It’s common to add a break to a new line after
%>% to help readability).
nycflights data frame,
filter for flights headed to LAX, and save the result as a
new data frame called lax_flights.
== means “if it’s equal to”.LAX is in quotation marks since it is a character
string.ggplot call from earlier
for making a histogram, except that it uses the smaller data frame for
flights headed to LAX instead of all flights.Logical operators: Filtering for certain
observations (e.g. flights from a particular airport) is often of
interest in data frames where we might want to examine observations with
certain characteristics separately from the rest of the data. To do so,
you can use the filter function and a series of
logical operators. The most commonly used logical
operators for data analysis are as follows:
== means “equal to”!= means “not equal to”> or < means “greater than” or “less
than”>= or <= means “greater than or
equal to” or “less than or equal to”You can also obtain numerical summaries for these flights:
lax_flights %>%
summarise(mean_dd = mean(dep_delay),
median_dd = median(dep_delay),
n = n())## # A tibble: 1 × 3
## mean_dd median_dd n
## <dbl> <dbl> <int>
## 1 9.78 -1 1583
Note that in the summarise function you created a list
of three different numerical summaries that you were interested in. The
names of these elements are user defined, like mean_dd,
median_dd, n, and you can customize these
names as you like (just don’t use spaces in your names). Calculating
these summary statistics also requires that you know the function calls.
Note that n() reports the sample size.
Summary statistics: Some useful function calls for summary statistics for a single numerical variable are as follows:
meanmediansdvarIQRminmaxNote that each of these functions takes a single vector as an argument and returns a single value.
You can also filter based on multiple criteria. Suppose you are interested in flights headed to San Francisco (SFO) in February:
sfo_feb_flights <- nycflights %>%
filter(dest == "SFO", month == 2)Note that you can separate the conditions using commas if you want
flights that are both headed to SFO and in February. If
you are interested in either flights headed to SFO or
in February, you can use the | instead of the comma.
Create a new data frame that includes flights headed to SFO in
February, and save this data frame as sfo_feb_flights. How
many flights meet these criteria?
I will use fliter function as your previous example
library(dplyr)
sfo_feb_flights <- nycflights %>%
filter(dest == "SFO",
month == 2)Then i will figure out how many flights meet these criteria by using ‘nrow’ function.
nrow(sfo_feb_flights)## [1] 68
library(ggplot2)
ggplot(data = sfo_feb_flights, aes(x = arr_delay)) +
geom_histogram(binwidth = 15)Another useful technique is quickly calculating summary statistics
for various groups in your data frame. For example, we can modify the
above command using the group_by function to get the same
summary stats for each origin airport:
sfo_feb_flights %>%
group_by(origin) %>%
summarise(median_dd = median(dep_delay), iqr_dd = IQR(dep_delay), n_flights = n())## # A tibble: 2 × 4
## origin median_dd iqr_dd n_flights
## <chr> <dbl> <dbl> <int>
## 1 EWR 0.5 5.75 8
## 2 JFK -2.5 15.2 60
Here, we first grouped the data by origin and then
calculated the summary statistics.
arr_delays of flights in in the
sfo_feb_flights data frame, grouped by carrier. Which
carrier has the most variable arrival delays?sfo_feb_flights %>%
group_by(carrier) %>%
summarise(median_ad = median(arr_delay), iqr_ad = IQR(arr_delay))## # A tibble: 5 × 3
## carrier median_ad iqr_ad
## <chr> <dbl> <dbl>
## 1 AA 5 17.5
## 2 B6 -10.5 12.2
## 3 DL -15 22
## 4 UA -10 22
## 5 VX -22.5 21.2
Which carrier has the most variable arrival delays? Well to figure out whcih ‘carrier’ with the most variable arrival delays can be determined by looking at the IQR (Interquartile Range), which measures the spread of the middle 50% of the data. The larger the IQR, the more variable the data. In the output, we can compare the values of iqr_ad for each carrier and determine which carrier has the largest value, indicating the most variable arrival delays.
sfo_feb_flights %>%
group_by(carrier) %>%
summarise(median_ad = median(arr_delay), iqr_ad = IQR(arr_delay)) %>%
arrange(desc(iqr_ad)) %>%
slice(1)## # A tibble: 1 × 3
## carrier median_ad iqr_ad
## <chr> <dbl> <dbl>
## 1 DL -15 22
Which month would you expect to have the highest average delay departing from an NYC airport?
Let’s think about how you could answer this question:
group_by months, thensummarise mean departure delays.arrange these average delays in
descending ordernycflights %>%
group_by(month) %>%
summarise(mean_dd = mean(dep_delay)) %>%
arrange(desc(mean_dd))## # A tibble: 12 × 2
## month mean_dd
## <int> <dbl>
## 1 7 20.8
## 2 6 20.4
## 3 12 17.4
## 4 4 14.6
## 5 3 13.5
## 6 5 13.3
## 7 8 12.6
## 8 2 10.7
## 9 1 10.2
## 10 9 6.87
## 11 11 6.10
## 12 10 5.88
The pros of choosing the month with the lowest mean departure delay is that it takes into account all the departure delays, giving a representative overview of the typical departure delay experienced during that month. This is a good option if the data is symmetrically distributed. The cons of this approach is that if the data is skewed. For example you have extreme values, the mean can be affected and give an incorrect representation of the typical departure delay. The pros of choosing the month with the lowest median departure delay is that it is less affected by extreme values and gives a better representation of the typical departure delay if the data is skewed.The cons of this approach is that it does not take into account the entire distribution of departure delays, only the middle value. This can lead to an incorrect representation if the distribution is not symmetrical. So, depending on the distribution of departure delays, either mean or median could be a better choice for determining the month with the minimum departure delay.
Suppose you will be flying out of NYC and want to know which of the three major NYC airports has the best on time departure rate of departing flights. Also supposed that for you, a flight that is delayed for less than 5 minutes is basically “on time.”” You consider any flight delayed for 5 minutes of more to be “delayed”.
In order to determine which airport has the best on time departure rate, you can
Let’s start with classifying each flight as “on time” or “delayed” by
creating a new variable with the mutate function.
nycflights <- nycflights %>%
mutate(dep_type = ifelse(dep_delay < 5, "on time", "delayed"))The first argument in the mutate function is the name of
the new variable we want to create, in this case dep_type.
Then if dep_delay < 5, we classify the flight as
"on time" and "delayed" if not, i.e. if the
flight is delayed for 5 or more minutes.
Note that we are also overwriting the nycflights data
frame with the new version of this data frame that includes the new
dep_type variable.
We can handle all of the remaining steps in one code chunk:
nycflights %>%
group_by(origin) %>%
summarise(ot_dep_rate = sum(dep_type == "on time") / n()) %>%
arrange(desc(ot_dep_rate))## # A tibble: 3 × 2
## origin ot_dep_rate
## <chr> <dbl>
## 1 LGA 0.728
## 2 JFK 0.694
## 3 EWR 0.637
I would choose the airport with the highest on-time departure percentage.
Based on the on-time departure percentage in the previous code, I would choose LGA airport to fly out of.
You can also visualize the distribution of on on time departure rate across the three airports using a segmented bar plot.
ggplot(data = nycflights, aes(x = origin, fill = dep_type)) +
geom_bar()avg_speed traveled by the plane
for each flight (in mph). Hint: Average speed can be
calculated as distance divided by number of hours of travel, and note
that air_time is given in minutes.The average speed can be calculated as distance divided by number of hours of travel. to mutate the data frame i will use the dplyr package.
nycflights <- nycflights %>%
mutate(avg_speed = distance / (air_time / 60))first i used the mutate function to add a new column to the data frame nycflights. The first argument in the mutate function is the name of the new column, avg_speed. The second argument is an expression that calculates the average speed.
avg_speed
vs. distance. Describe the relationship between average
speed and distance. Hint: Use
geom_point().ggplot(data = nycflights, aes(x = distance, y = avg_speed)) +
geom_point()colored by
carrier. Once you replicate the plot, determine (roughly)
what the cutoff point is for departure delays where you can still expect
to get to your destination on time.By Replicate the previous plot
# Filter flights by American Airlines, Delta Airlines, and United Airlines
dl_aa_ua <- nycflights13::flights %>%
dplyr::filter(carrier %in% c("AA", "DL", "UA"))
# Create a scatterplot of departure delay vs arrival delay, colored by carrier
ggplot(data = dl_aa_ua, aes(x = dep_delay, y = arr_delay, color = carrier)) +
geom_point() +
labs(title = "Arrival Delay vs. Departure Delay by Carrier",
x = "Departure Delay (minutes)",
y = "Arrival Delay (minutes)",
color = "Carrier")I can look at the points where the arrival delay is close to 0. Based on the plot, it seems that departure delays of up to about 15-20 minutes are associated with arrival delays close to 0, so i could expect to get to our destination on time even with some minor departure delay.