library(tidyverse)
library(tidyquant)
Get Stock Prices and Convert to Returns
Ra <- c("AMZN", "TSLA", "ABC") %>%
tq_get(get = "stock.prices" ,
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 42 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AMZN 2022-01-31 -0.122
## 2 AMZN 2022-02-28 0.0267
## 3 AMZN 2022-03-31 0.0614
## 4 AMZN 2022-04-29 -0.238
## 5 AMZN 2022-05-31 -0.0328
## 6 AMZN 2022-06-30 -0.116
## 7 AMZN 2022-07-29 0.271
## 8 AMZN 2022-08-31 -0.0606
## 9 AMZN 2022-09-30 -0.109
## 10 AMZN 2022-10-31 -0.0935
## # … with 32 more rows
Get Baseline and Convert to Returns
Rb <- c("^IXIC") %>%
tq_get(get = "stock.prices" ,
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 14 × 3
## # Groups: symbol [1]
## symbol date Rb
## <chr> <date> <dbl>
## 1 ^IXIC 2022-01-31 -0.101
## 2 ^IXIC 2022-02-28 -0.0343
## 3 ^IXIC 2022-03-31 0.0341
## 4 ^IXIC 2022-04-29 -0.133
## 5 ^IXIC 2022-05-31 -0.0205
## 6 ^IXIC 2022-06-30 -0.0871
## 7 ^IXIC 2022-07-29 0.123
## 8 ^IXIC 2022-08-31 -0.0464
## 9 ^IXIC 2022-09-30 -0.105
## 10 ^IXIC 2022-10-31 0.0390
## 11 ^IXIC 2022-11-30 0.0437
## 12 ^IXIC 2022-12-30 -0.0873
## 13 ^IXIC 2023-01-31 0.107
## 14 ^IXIC 2023-02-13 0.0265
Join the Two Tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 42 × 5
## symbol.x date Ra symbol.y Rb
## <chr> <date> <dbl> <chr> <dbl>
## 1 AMZN 2022-01-31 -0.122 ^IXIC -0.101
## 2 AMZN 2022-02-28 0.0267 ^IXIC -0.0343
## 3 AMZN 2022-03-31 0.0614 ^IXIC 0.0341
## 4 AMZN 2022-04-29 -0.238 ^IXIC -0.133
## 5 AMZN 2022-05-31 -0.0328 ^IXIC -0.0205
## 6 AMZN 2022-06-30 -0.116 ^IXIC -0.0871
## 7 AMZN 2022-07-29 0.271 ^IXIC 0.123
## 8 AMZN 2022-08-31 -0.0606 ^IXIC -0.0464
## 9 AMZN 2022-09-30 -0.109 ^IXIC -0.105
## 10 AMZN 2022-10-31 -0.0935 ^IXIC 0.0390
## # … with 32 more rows
Calculate CAPM
RaRb_Correlation <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.Correlation)
RaRb_Correlation
## # A tibble: 1 × 4
## `p-value` `Lower CI` `Upper CI` to.Rb
## <dbl> <dbl> <dbl> <dbl>
## 1 0.000000576 0.481 0.818 0.685