fulldf %>%
mutate(Date2 = ymd(Date)) %>%
filter(between(Date2, today() - days(180), today() )) %>%
rename(DateOld = Date) %>%
rename(Date = Date2) %>%
mutate(percent_rank_sRPE = rank(sRPE)/length(sRPE))# A tibble: 181 × 33
DateOld Sleep `Sleep (hrs)` HRV Respirations RHR Energy
<dttm> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2023-04-04 00:00:00 396 6.6 51 13.9 51 8
2 2023-04-05 00:00:00 389 6.48 49 13.6 49 8
3 2023-04-06 00:00:00 416 6.93 44 14.2 50 7
4 2023-04-07 00:00:00 379 6.32 30 14.2 55 6
5 2023-04-08 00:00:00 466 7.77 57 15.1 51 8
6 2023-04-09 00:00:00 380 6.33 32 14.1 52 7
7 2023-04-10 00:00:00 390 6.5 52 14.1 54 4
8 2023-04-11 00:00:00 337 5.62 50 14.5 52 5
9 2023-04-12 00:00:00 386 6.43 45 14 51 4
10 2023-04-13 00:00:00 388 6.47 38 13.6 52 5
Soreness Wellness TSS KJs Tonnage sRPE `Strength Training` Run
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 5 13 0 0 8105 370 1 1
2 5 13 0 0 4155 358 1 1
3 5 12 0 0 2000 372 1 1
4 4 10 0 0 8640 162 1 0
5 5 13 0 0 0 368 0 1
6 6 13 0 0 0 600 0 1
7 5 9 0 0 3600 132 1 0
8 5 10 0 0 7485 477 1 1
9 5 9 0 0 3980 124 1 0
10 6 11 0 0 2160 286 1 1
`Mountain Bike` `Road Bike` `Indoor Bike` Run_sRPE Strength_sRPE Cond_sRPE
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0 0 0 150 220 150
2 0 0 0 205 153 205
3 0 0 0 132 240 132
4 0 0 0 0 162 0
5 0 0 0 368 0 368
6 1 0 0 150 0 600
7 0 0 0 0 132 0
8 0 0 0 252 225 252
9 0 0 0 0 124 0
10 0 0 0 115 171 115
chronic_sRPE acute_sRPE chronic_HRV acute_HRV chronic_RHR acute_RHR
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 259. 294. 37.8 39 52.4 53.3
2 267. 330. 38.4 41.4 52.3 52.6
3 276. 332. 38.6 42.9 52.3 52
4 269. 339. 38.2 42 52.5 52.3
5 272. 352. 38.5 45.4 52.6 51.7
6 273. 401. 38.4 43.9 52.5 51.6
7 275. 337. 39.1 45 52.5 51.7
8 282. 353. 39.2 44.9 52.6 51.9
9 277. 319. 39.4 44.3 52.6 52.1
10 282. 307 39.5 43.4 52.6 52.4
rolling_energy rolling_sore ACWR digits Date percent_rank_sRPE
<dbl> <dbl> <dbl> <dbl> <date> <dbl>
1 6.07 6.71 1.14 2 2023-04-04 0.696
2 6.14 6.43 1.24 2 2023-04-05 0.652
3 6.36 6.21 1.20 2 2023-04-06 0.707
4 6.5 6 1.26 2 2023-04-07 0.116
5 6.64 5.86 1.30 2 2023-04-08 0.691
6 6.93 5.71 1.47 2 2023-04-09 0.961
7 6.86 5.64 1.23 2 2023-04-10 0.0497
8 6.79 5.64 1.25 2 2023-04-11 0.873
9 6.57 5.57 1.15 2 2023-04-12 0.0193
10 6.43 5.5 1.09 2 2023-04-13 0.464
# … with 171 more rows
load_recoveryplot