# Load Packages
library(tidyquant)
library(tidyverse)
Ra <- c("NVDA", "DELL", "DIS") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 42 × 3
## # Groups: symbol [3]
## symbol date Ra
## <chr> <date> <dbl>
## 1 NVDA 2022-01-31 -0.187
## 2 NVDA 2022-02-28 -0.00412
## 3 NVDA 2022-03-31 0.119
## 4 NVDA 2022-04-29 -0.320
## 5 NVDA 2022-05-31 0.00674
## 6 NVDA 2022-06-30 -0.188
## 7 NVDA 2022-07-29 0.198
## 8 NVDA 2022-08-31 -0.169
## 9 NVDA 2022-09-30 -0.196
## 10 NVDA 2022-10-31 0.112
## # … with 32 more rows
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 14 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## 11 2022-11-30 0.0437
## 12 2022-12-30 -0.0873
## 13 2023-01-31 0.107
## 14 2023-02-10 0.0115
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 42 × 4
## # Groups: symbol [3]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 NVDA 2022-01-31 -0.187 -0.101
## 2 NVDA 2022-02-28 -0.00412 -0.0343
## 3 NVDA 2022-03-31 0.119 0.0341
## 4 NVDA 2022-04-29 -0.320 -0.133
## 5 NVDA 2022-05-31 0.00674 -0.0205
## 6 NVDA 2022-06-30 -0.188 -0.0871
## 7 NVDA 2022-07-29 0.198 0.123
## 8 NVDA 2022-08-31 -0.169 -0.0464
## 9 NVDA 2022-09-30 -0.196 -0.105
## 10 NVDA 2022-10-31 0.112 0.0390
## # … with 32 more rows
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 3 × 13
## # Groups: symbol [3]
## symbol ActiveP…¹ Alpha Annua…² Beta `Beta-` `Beta+` Corre…³ Corre…⁴ Infor…⁵
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 NVDA -0.03 0.0366 0.539 2.34 2.49 1.48 0.952 0 -0.07
## 2 DELL 0.0306 -0.0027 -0.0317 0.623 0.256 -0.787 0.535 0.0488 0.104
## 3 DIS -0.0457 0.0037 0.0451 1.24 2.12 2.05 0.792 0.0007 -0.166
## # … with 3 more variables: `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>, and abbreviated variable names ¹ActivePremium,
## # ²AnnualizedAlpha, ³Correlation, ⁴`Correlationp-value`, ⁵InformationRatio
All 3 of my stocks are positively skewed. The stocks are Nvidia, Dell, and Disney
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 3 × 2
## # Groups: symbol [3]
## symbol skewness.1
## <chr> <dbl>
## 1 NVDA 0.150
## 2 DELL 0.473
## 3 DIS 0.595