Step1, membangkitkan bil.acak geometrik dengan fungsi inverse transformation method

set.seed(123)
p <- 0.5
data <- -log(runif(1000))/p
data
##    [1]  2.492525640  0.475740073  1.788193101  0.248820737  0.122756833
##    [6]  6.177603957  1.276918455  0.227638952  1.190462563  1.567830547
##   [11]  0.088252091  1.582251548  0.778482945  1.115019108  4.547515589
##   [16]  0.211110024  2.804134326  6.337338399  2.229966819  0.093127625
##   [21]  0.234103145  0.734018010  0.890991039  0.011493408  0.844086135
##   [26]  0.689124434  1.217369341  1.041273793  2.481552039  3.833099760
##   [31]  0.075353408  0.205618557  0.740084122  0.457650781  7.408905420
##   [36]  1.477142953  0.552931654  3.061180121  2.290269703  2.925264408
##   [41]  3.892620145  1.761141047  1.765110811  1.994755110  3.761906117
##   [46]  3.949355094  2.913140973  1.527300454  2.648723663  0.306703995
##   [51]  6.165581848  1.631985685  0.448976796  4.209120627  1.156254197
##   [56]  3.154605741  4.118781416  0.566562569  0.221761763  1.964525756
##   [61]  0.815590057  4.711114098  1.914383596  2.586455978  0.410017867
##   [66]  1.603620325  0.421283173  0.415550725  0.460481551  1.642726307
##   [71]  0.563465851  0.926545047  0.684466877 14.756243307  1.487548450
##   [76]  3.027174983  1.936133877  0.979527960  2.089396779  4.394011564
##   [81]  2.824295618  0.806767788  1.746238457  0.476017399  4.548682577
##   [86]  1.665311699  0.030314628  0.226222922  0.241018109  3.485336983
##   [91]  4.069767246  0.852044149  2.137040429  0.840878949  2.276537160
##   [96]  3.345915300  0.491048530  4.737556915  1.523798555  1.340794039
##  [101]  1.021688050  2.200285677  1.432368890  0.093190113  1.455881444
##  [106]  0.232280771  0.178890811  0.992744549  1.779834302  3.833357487
##  [111]  0.133776312  2.399769676  5.602945466  0.107377712  0.655352504
##  [116]  3.899715724  1.198276945  0.093991948  1.070635057  1.810156249
##  [121]  0.868057960  2.279990024  2.357129930  3.030369025  1.991269344
##  [126]  0.031813278  3.738979794  4.792824748  3.905168031  0.742106779
##  [131]  0.958471482  0.229937236  0.792022595  0.610123827  1.303489522
##  [136]  0.831520494  0.392503157  0.480880685  0.040768882  1.644546701
##  [141]  2.331414055  1.785759087  9.119034288  3.387275321  0.342218930
##  [146]  2.929274917  2.861747180  5.135937524  2.807095269  0.623580150
##  [151]  0.331039407  1.396209831  1.893968852  2.801200454  4.394712869
##  [156]  1.883245617  1.117458763  3.056704456  1.620404953  3.046606042
##  [161]  1.377117195  2.077455946  0.861611498  1.963184653  2.068767364
##  [166]  1.255887965  0.601306713  3.018253808  1.769845200  2.650875067
##  [171]  0.924156466  3.387504143  0.293189006  0.584537138  0.806082148
##  [176]  0.962475802  1.976443365  1.270376694  0.267788991  1.083428611
##  [181]  0.349259792  2.326633392  0.689802419  2.655916525  1.040596717
##  [186]  1.462571389  2.655803891  1.143309410  0.181626522  0.206560053
##  [191]  2.588038500  2.269622743  0.028926411  0.956093182  0.129473691
##  [196]  1.524854319  1.798706994  0.833364600  3.763193961  1.114203199
##  [201]  2.864877432  0.076735566  1.017104001  1.327061314  1.819755964
##  [206]  0.255106501  2.020698135  2.487928616  3.536337052  3.518525550
##  [211]  1.459445551  2.749008845  3.062595970  0.787933769  6.087173399
##  [216]  0.710913979  2.088881043  1.788354113  0.394582920  0.169248788
##  [221]  2.527952900  0.079343659  0.633825161  0.752662068  5.880824370
##  [226]  1.856624733  1.476936144  1.158732682  0.718322937  0.176168912
##  [231]  0.961397308  1.695295469  1.224682019  5.678192618  2.687566925
##  [236]  1.846872635  3.241556577  0.368019812  3.756109470  0.437758956
##  [241]  1.207248679  0.824020033  3.524030566  0.914394809  2.330339313
##  [246]  0.644397015  1.837889378  0.062245843  0.066289806  0.638476095
##  [251]  2.715672356  3.012067206  1.044967797  2.637111191  1.265721377
##  [256]  0.483400149  3.566858795  1.810705634  1.503348827  0.282881045
##  [261]  0.154392953  0.251177333  0.788495984  0.102235084  1.321573374
##  [266]  1.101493891  2.179317745  2.114990798  7.821617431  1.375073713
##  [271]  0.276126920 10.134162434  5.260592171  3.613203445  0.521861991
##  [276]  0.615268110  0.057054859  1.525112948  5.197015026  0.865205683
##  [281]  0.552579308  3.974000678  1.849731815  2.983440165  5.696053995
##  [286]  1.853224187  5.468943390  2.975445830  5.814376809  0.800113401
##  [291]  2.423057339  4.590790359  5.264844062  0.254665701  0.564069691
##  [296]  0.405197380  0.036042068  4.534442752  4.624425999  0.449210210
##  [301]  0.485225539  9.327738492  0.499319326  0.631091634  0.923652383
##  [306]  1.464146821  3.707650403  9.603460502  1.586118933  1.417361087
##  [311]  1.885335578  1.532873072  0.675765260  5.789895074  2.072497338
##  [316]  0.439268749  0.358950015  2.873076161  2.076995249  0.308902136
##  [321]  0.316202407  2.435498156  3.833988015  0.701976399  4.530449753
##  [326]  6.778867313  0.001191299  6.711981313  2.167104818  0.177523063
##  [331]  0.965010031  2.501532486  0.608172027  0.362913520  2.315000613
##  [336]  1.416251410  0.720867524  0.888009562  0.880352515  0.044791026
##  [341]  1.760229421  4.250472091  1.284795359  2.982657852  1.441399525
##  [346]  1.987343811  0.033579971  1.891855631  2.945929350  0.945462544
##  [351]  3.982272447  0.066142770  1.326897910  3.627147407  0.949944561
##  [356]  0.028290822  0.804625611  1.740170205  2.258070871  0.360035657
##  [361]  3.878426635  3.292038376  0.217981566  2.354534816  2.025049687
##  [366]  0.486829056  3.286209881  8.060958699  1.799812063  1.454783088
##  [371]  1.726234898  2.141164833  0.286624852  1.574440827  1.255599697
##  [376]  0.073653033  0.510838862  3.132025672  2.350208204  0.058152390
##  [381]  1.072628453  0.546707430  1.973912533  0.524824362  1.240993861
##  [386]  0.179859372  3.371596695  2.530147956  4.708548233  3.116662019
##  [391]  0.046334611  2.432750965  0.640457287  0.482391446  4.499648576
##  [396]  2.857613659  2.614634615  4.584111561  4.275602160  0.017604138
##  [401]  0.028087715  3.974563965  0.198956629  1.102247464  1.855467614
##  [406]  1.597893433  0.694858772  4.989847408  2.161667062  0.769009975
##  [411]  2.298027237  0.368882969  3.072634373  1.394515490  2.574348912
##  [416]  3.300276925  0.101279092  2.268112928  1.474380448  7.151632184
##  [421]  1.204933702  0.879367218  1.034145041  2.266796476  0.230565126
##  [426]  0.935989066  2.388672667  1.892445189  3.659233071  0.295719922
##  [431]  0.096068351  1.146662440  2.220070081  0.006777032  2.897874793
##  [436]  0.979851233  4.447944733  1.438848559  4.616284544  3.650643723
##  [441]  2.524667146  1.076145846  0.624748436  3.597315482  0.286660748
##  [446]  0.689001171  0.547822557  3.833501378  2.054126379  0.791032085
##  [451]  1.293204397  2.100777183  2.849815081  5.688021782  2.882601780
##  [456]  0.232892554  0.416935006  0.581998277  3.729799671  4.163013929
##  [461]  0.051198139  1.659629848  1.535669787  3.600009764  1.072503773
##  [466]  2.612911820  2.938509332  0.738629463  2.525660147  0.420459425
##  [471]  4.730696098  0.391956603  1.699937538  0.559726083  0.823815113
##  [476]  1.621487181  0.933151233 15.345445529  3.053472740  0.699477409
##  [481]  3.072686374  0.411752680  2.356844864  0.748681029  0.139383919
##  [486]  4.312132670  4.116053952  0.776555745  1.692836381  0.362082407
##  [491]  0.057955525  5.304597852  1.553991740  0.708826098  4.885070244
##  [496]  0.014161990  2.747949172  6.010012866  0.752808160  0.479238688
##  [501]  2.079143530  2.007833077  2.495848473  5.052134595  2.013228250
##  [506]  3.451788243  1.247041796  1.370561556  0.113066411  2.149862127
##  [511]  1.532667205  4.989158196  0.301397316  1.854396810  0.613323844
##  [516]  3.523507483  1.575963769  0.522197756  5.540383248  0.408934354
##  [521]  2.400343246  2.017519250  2.328781288  6.573775951  1.312454673
##  [526]  0.774228787  0.203548220  7.336060753  0.021963618  2.388786836
##  [531]  0.125584838  0.749073958  1.610227851  0.405510282  6.462949830
##  [536]  0.604828965  2.106974846  0.374465216  1.248954193  2.585277545
##  [541]  0.443917977  4.779672384  0.367586620  2.568522228  0.567087695
##  [546]  0.073011458  5.015125299  0.314794146  0.440699373  1.908122251
##  [551]  2.231939733  3.170088709  1.126405106  0.237442773  1.270835736
##  [556]  1.065601786  0.813726743  1.270162403  1.347305282  8.250372934
##  [561]  6.085229150  0.146538255  0.524586133  3.208098752  0.860761377
##  [566]  0.850009492  1.856454573  0.415759209  1.206527333  0.244035513
##  [571]  1.183659298  0.197325742  1.063889587  1.718575197  0.103459784
##  [576]  0.687692587  1.767136945  7.994716987  1.135730150  1.426440800
##  [581]  0.258682604  0.414410763  0.315414045  1.999910263  0.269464426
##  [586]  3.776476800  2.533032538  0.810814746  0.045752194  1.080029226
##  [591]  1.282665742  5.600915774  0.062901122  4.236578829  4.852597085
##  [596]  0.253930872  1.353089023  2.172409183  0.223350545  6.885812784
##  [601]  2.877452840  0.752326218  2.976048079  2.288299592  3.497585982
##  [606]  0.442716333  3.844437234  0.390285051  2.211286927  1.966093351
##  [611]  0.924879261  4.673654584  7.633997068  0.013959040  1.075918036
##  [616]  0.492253647  0.228811215  0.562431506  0.042031116  6.240457531
##  [621]  0.203177753  0.288893928  0.508732927  1.951994336  6.335032753
##  [626]  2.018945407  2.591070719  0.323938207  2.030003959  2.378314264
##  [631]  0.551150409  0.337228763  1.562114747  0.630430883  4.525217100
##  [636]  3.028408401  0.094285424  0.569938069  0.399451347  1.745614476
##  [641]  1.042295787  0.449230373  0.236646900  1.908028847  4.808746566
##  [646]  0.937629034  0.587034884  4.921322932  2.404497841  0.973690408
##  [651]  0.567560567  0.173171009  1.485723420  1.134370598  0.611365307
##  [656]  0.307590829  0.190498053  5.751202647  1.374694847  2.096533680
##  [661]  0.335521469  0.430263553  4.285508683  0.677427139  2.894052684
##  [666]  5.181687965  0.133035844  3.700882189  0.870640697  3.502950803
##  [671]  7.816658751  1.302806053  4.900363750  2.524600183  1.732931250
##  [676]  1.064513531  0.429620664  3.199022601  1.555560572  1.605285294
##  [681]  0.619179926  0.671631435  0.369716794  0.240799140  0.097026800
##  [686]  1.193432633  1.298889336  3.535715740  1.470975822  2.742253573
##  [691]  6.448749984  0.908888975  1.233999185  3.930746975  2.519592853
##  [696]  1.079031230  3.603305790  4.680550853  1.694401304  2.066989063
##  [701]  0.336994612  2.693128527  7.531996891  0.296073225  2.189710941
##  [706]  0.918400009  1.208711828  1.953969342  3.365383106  1.692873704
##  [711]  0.921616557  1.304615744  0.832178680  0.631173130  1.439709864
##  [716]  1.911848659  9.971833995 11.207388770  0.010152846  4.453344013
##  [721]  1.741348538  0.662893043  0.595359413  0.273934408  0.995595180
##  [726]  0.558889912  0.331539479  0.979499742  0.463298828  7.557198435
##  [731]  1.749747990  0.267331632  0.869745565  0.157049915  3.517905920
##  [736]  2.305211361  0.435674611  0.022195888  2.264014167 13.464869011
##  [741]  0.015720382  3.816329620  6.017055690  1.030492485  2.270582981
##  [746]  1.277586947  0.457764924  5.349252219  0.727627307  0.105469703
##  [751]  2.561928607  2.777341684  3.672231904  5.272481033  1.168809481
##  [756]  1.427364982  1.409256222  0.236730343  6.609719470  3.181783780
##  [761]  1.331915807  2.884968605  1.105255677  1.458552444  1.126510395
##  [766]  3.873769589  3.852290853  1.772089996  0.762490729  0.851046406
##  [771]  0.175507669  0.413770050  0.783449872  0.427626654  4.110443727
##  [776]  2.766370128  2.207971450  1.796561333  0.907103172  0.424872052
##  [781]  2.703390149  0.398201959  8.336714012  0.848070644  0.417200676
##  [786]  1.547114562  3.184993440  7.951180830  2.523679193  0.177066613
##  [791]  0.137207636  1.223017842  3.033511949  1.429036634  0.443417322
##  [796]  1.794787530  4.532283256  2.541898458  2.035173368  2.699964663
##  [801]  1.507145852  2.011088478  4.219437750  6.115484286  2.672752111
##  [806]  0.063722095  1.432850111  1.477033877  0.578585722  0.808011653
##  [811]  6.014978361  0.727384028  2.025264269  0.246294176  0.509017602
##  [816]  3.943634745  2.441496990  4.141633121  1.055598991  1.153661608
##  [821]  0.745837700  2.334183954  1.003114610  0.018012229  0.593566956
##  [826]  5.157807143  1.591826989  5.854766996  2.160235657  0.618622890
##  [831] 10.990153878  0.517775973  1.540163532  0.654675190  0.811413123
##  [836]  1.116974827  0.702485308  0.839469695  2.480221675  4.661157455
##  [841]  0.076605921  0.612142839  0.979683113  4.241712743  1.194732236
##  [846]  2.673056754  0.214366950  9.381467957  2.885856956  4.079755693
##  [851]  2.240285959  0.639311964  0.016578048  0.670572003  1.368613501
##  [856]  1.660007405  0.105061276  4.237504563  5.176666697  0.235267735
##  [861]  1.713912260  6.323069469  0.869451686  1.515929722  0.962772740
##  [866]  2.612635502  3.699260867  4.338657748  1.355796623  1.202842150
##  [871]  3.923015674  3.546632589  0.543655969  1.279611196  0.299346270
##  [876]  0.790371283  8.679309524  0.732876612  0.229220252  0.918205955
##  [881]  4.464352890  0.164448897  0.785011742  3.813078917  0.587824634
##  [886]  0.118228944  1.731274250  2.423182985  2.698562395  3.002231721
##  [891]  1.139544176  0.557708617  0.802138928  1.208358525  0.417831354
##  [896]  0.551067520  7.817211083  1.930417383  5.956566254  0.451536643
##  [901]  0.158737574  1.222771764  0.319481818  1.077206196  0.805965453
##  [906]  1.341540459  0.541648366  0.203263203  0.395744865  5.278022872
##  [911] 11.095433687  5.905398601  0.286447441  1.102444137  2.317727563
##  [916]  0.082757249  1.051222938  1.264445355  1.914555316  2.281662833
##  [921]  0.425430592  6.344008406  2.022617088  0.309575509  0.719225429
##  [926]  0.758172793  2.111019090  1.178721220  3.971995404  0.484317509
##  [931]  0.240130490  3.178330759  0.521112101  1.033811605  0.086504594
##  [936]  3.681625526  1.285005952  0.271292701  0.279199949  7.485519068
##  [941]  0.048811436  1.425784890  1.887476366  1.746678206  4.751907466
##  [946]  3.642674705  1.805680714  2.146974500  1.757713164  2.381109994
##  [951]  1.158635322  3.717412649  0.088782204  6.248648895  1.976874950
##  [956]  0.076202770  0.875684733  5.585171005  1.783460019  1.707077295
##  [961]  1.353925379  1.598794358  0.945578584  3.932541008  0.193139864
##  [966]  1.126192213  1.201936254  4.294111485  0.543543085  1.474743888
##  [971]  0.491880581  6.157073811  0.397280772  2.623053318  2.525674183
##  [976]  0.882532085  0.106550857  9.924131893  2.090421705  1.739550473
##  [981]  1.562310266  0.680218463  0.167093555  0.933264396  0.205878502
##  [986]  0.555914599  3.963056913  3.751305749  3.307697398  1.673180132
##  [991]  4.878659242  2.994183696  1.116712784  1.831735751  1.140212409
##  [996]  0.373565678  0.885979404  1.875545904  0.686164476  4.436045418
hist(data, main = "Histogram of 1000 Geometric Random Numbers", xlab = "Value", col = "lightblue")

  1. set.seed(123) digunakan untuk menetapkan seed agar hasil dapat diprediksi (sehingga hasil yang sama akan diperoleh setiap kali program dijalankan).
  2. runif(1000) membangkitkan 1000 bilangan acak uniform.
  3. -log(runif(1000))/p adalah transformasi dari bilangan acak uniform ke bilangan acak menyebar geometrik, dimana p adalah parameter sukses.
  4. Hasil dari transformasi akan disimpan ke dalam objek data.
  5. Untuk memeriksa distribusi hasil dapat menggunakan histogram seperti diatas

Step2, membangkitkan bil.acak geometrik dengan input nilai p

set.seed(123)
p <- 0.5
data <- rgeom(1000, p)
hist(data, main = "Histogram of 1000 Geometric Random Numbers", xlab = "Value", col = "darkblue")

  1. set.seed(123) digunakan untuk menetapkan seed agar hasil dapat diprediksi (sehingga hasil yang sama akan diperoleh setiap kali program dijalankan).
  2. p <- 0.5 menentukan nilai parameter sukses p.
  3. rgeom(1000, p) membangkitkan 1000 bilangan acak menyebar geometrik dengan parameter sukses p.
  4. Hasil dari rgeom akan disimpan ke dalam objek data.
  5. Untuk memeriksa distribusi hasil dapat menggunakan histogram seperti diatas

Membangkitkan bil.acak binomial negatif langsung dari sebaran uniform

set.seed(123)
n <- 10
p <- 0.5
data <- qnbinom(runif(1000), size = n, prob = p)
table(data)
## data
##  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
##  2  4 13 26 41 69 71 88 97 96 90 74 72 55 53 36 36 15 17 15  9  6  5  6  2  1 
## 29 
##  1
data
##    [1]  7 13  9 15 18  3 10 16 10  9 19  9 12 10  5 16  7  3  8 18 16 12 11 24
##   [25] 11 12 10 11  7  5 19 16 12 13  3  9 13  6  8  7  5  9  9  8  6  5  7  9
##   [49]  7 15  3  9 14  5 10  6  5 13 16  8 11  5  8  7 14  9 14 14 13  9 13 11
##   [73] 12  0  9  6  8 11  8  5  7 11  9 13  5  9 21 16 16  6  5 11  8 11  8  6
##   [97] 13  5  9 10 11  8  9 18  9 16 16 11  9  5 17  7  4 18 12  5 10 18 10  8
##  [121] 11  8  7  6  8 21  6  5  5 12 11 16 12 12 10 11 14 13 21  9  7  9  2  6
##  [145] 14  7  7  4  7 12 15  9  8  7  5  8 10  6  9  6 10  8 11  8  8 10 13  6
##  [169]  9  7 11  6 15 13 12 11  8 10 15 10 14  7 12  7 11  9  7 10 16 16  7  8
##  [193] 22 11 17  9  8 11  6 10  7 19 11 10  8 15  8  7  6  6  9  7  6 12  4 12
##  [217]  8  9 14 17  7 19 12 12  4  8  9 10 12 17 11  9 10  4  7  8  6 14  6 14
##  [241] 10 11  6 11  7 12  8 20 19 12  7  6 11  7 10 13  6  8  9 15 17 15 12 18
##  [265] 10 10  8  8  3 10 15  2  4  6 13 12 20  9  4 11 13  5  8  6  4  8  4  6
##  [289]  4 12  7  5  4 15 13 14 21  5  5 14 13  2 13 12 11  9  6  2  9  9  8  9
##  [313] 12  4  8 14 14  7  8 15 15  7  5 12  5  3 29  3  8 16 11  7 12 14  7  9
##  [337] 12 11 11 20  9  5 10  6  9  8 21  8  7 11  5 19 10  6 11 22 12  9  8 14
##  [361]  5  6 16  7  8 13  6  2  8  9  9  8 15  9 10 19 13  6  7 20 10 13  8 13
##  [385] 10 16  6  7  5  6 20  7 12 13  5  7  7  5  5 23 22  5 16 10  8  9 12  4
##  [409]  8 12  8 14  6  9  7  6 18  8  9  3 10 11 11  8 16 11  7  8  6 15 18 10
##  [433]  8 25  7 11  5  9  5  6  7 10 12  6 15 12 13  5  8 12 10  8  7  4  7 16
##  [457] 14 13  6  5 20  9  9  6 10  7  7 12  7 14  5 14  9 13 11  9 11  0  6 12
##  [481]  6 14  7 12 17  5  5 12  9 14 20  4  9 12  4 23  7  4 12 13  8  8  7  4
##  [505]  8  6 10 10 18  8  9  4 15  8 12  6  9 13  4 14  7  8  7  3 10 12 16  3
##  [529] 22  7 18 12  9 14  3 13  8 14 10  7 14  5 14  7 13 19  4 15 14  8  8  6
##  [553] 10 16 10 10 11 10 10  2  4 17 13  6 11 11  8 14 10 15 10 16 10  9 18 12
##  [577]  9  2 10  9 15 14 15  8 15  6  7 11 20 10 10  4 19  5  4 15 10  8 16  3
##  [601]  7 12  6  8  6 14  5 14  8  8 11  5  3 23 10 13 16 13 21  3 16 15 13  8
##  [625]  3  8  7 15  8  7 13 14  9 12  5  6 18 13 14  9 11 14 16  8  5 11 13  4
##  [649]  7 11 13 17  9 10 12 15 16  4 10  8 14 14  5 12  7  4 17  6 11  6  3 10
##  [673]  4  7  9 10 14  6  9  9 12 12 14 16 18 10 10  6  9  7  3 11 10  5  7 10
##  [697]  6  5  9  8 14  7  3 15  8 11 10  8  6  9 11 10 11 12  9  8  2  1 24  5
##  [721]  9 12 13 15 11 13 15 11 13  3  9 15 11 17  6  8 14 22  8  1 23  5  4 11
##  [745]  8 10 13  4 12 18  7  7  6  4 10  9  9 16  3  6 10  7 10  9 10  5  5  9
##  [769] 12 11 17 14 12 14  5  7  8  9 11 14  7 14  2 11 14  9  6  2  7 16 17 10
##  [793]  6  9 14  9  5  7  8  7  9  8  5  4  7 19  9  9 13 11  4 12  8 15 13  5
##  [817]  7  5 11 10 12  7 11 23 13  4  9  4  8 12  1 13  9 12 11 10 12 11  7  5
##  [841] 19 12 11  5 10  7 16  2  7  5  8 12 23 12 10  9 18  5  4 16  9  3 11  9
##  [865] 11  7  6  5 10 10  5  6 13 10 15 12  2 12 16 11  5 17 12  5 13 18  9  7
##  [889]  7  6 10 13 12 10 14 13  3  8  4 14 17 10 15 10 12 10 13 16 14  4  1  4
##  [913] 15 10  7 19 11 10  8  8 14  3  8 15 12 12  8 10  5 13 16  6 13 11 19  6
##  [937] 10 15 15  3 20  9  8  9  5  6  8  8  9  7 10  6 19  3  8 19 11  4  9  9
##  [961] 10  9 11  5 16 10 10  5 13  9 13  3 14  7  7 11 18  2  8  9  9 12 17 11
##  [985] 16 13  5  6  6  9  4  6 10  8 10 14 11  8 12  5
barplot(table(data)/n)

hist(table(data))

  1. set.seed(123) digunakan untuk menetapkan seed agar hasil dapat diprediksi (sehingga hasil yang sama akan diperoleh setiap kali program dijalankan).
  2. n <- 10 menentukan nilai parameter ukuran (size) n.
  3. p <- 0.5 menentukan nilai parameter sukses p.
  4. runif(1000) membangkitkan 1000 bilangan acak uniform.
  5. qnbinom(runif(1000), size = n, prob = p) mengubah bilangan acak uniform menjadi bilangan acak binomial negatif dengan parameter size = n dan prob = p.