hasilnya ada dua, ya/tidak, sukses/gagal bisa aja pake permisalan 10 saham, trs mau cari 2 saham terbaik
dbinom(x=2, size=10, prob=0.3)
## [1] 0.2334744
klo ambil berkali-kali:
mean(rbinom(n=10000,size=10,prob=0.3)==2)
## [1] 0.2304
artinya : probabilitasnya memang segitu, mau seberapapun pengambilannya. kaya sampel dari berbagai daerah, maka kita pakai yg ambil berkali-kali. bisa ngga sampelnya cmn di satu daerah : bisa, tp gabisa di generalisasikan ke daerah yg lain. kalau mau generalisasikan, kita lihat dari iklim, ph air, dll.
kalau meneliti berdasarkan pengalaman, maka harus survei - berdasarkan survei (bukan sebuah penelitian). Maka seperti kualitatif research. Penelitian yg bagus adlh kombinasi kualitatif dan kuantitatif research.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(scales)
data.frame(heads = 0:10, prob = dbinom(x = 0:10, size = 10, prob = 0.3)) %>%
mutate(Heads = ifelse(heads == 2, "2", "other")) %>%
ggplot(aes(x = factor(heads), y = prob, fill = Heads)) +
theme_minimal()+
geom_col() +
geom_text(
aes(label = round(prob,2), y = prob + 0.01),
position = position_dodge(0.9),
size = 3,
vjust = 0) +
labs(title = "Probability of X = 2 successes",
subtitle = "b(10, .3)",
x = "Successes (x)",
y = "probability")
kasus 2:
dbinom(0, size=10, prob=0.3) +
dbinom(1, size=10, prob=0.3) +
dbinom(2, size=10, prob=0.3) +
dbinom(3, size=10, prob=0.3) +
dbinom(4, size=10, prob=0.3) +
dbinom(5, size=10, prob=0.3) # manual calculation for binomial distribution
## [1] 0.952651
pbinom(5, size=10, prob=0.3) # alternative way for binomial distribution
## [1] 0.952651
pbinom(q=5,size=10,p=0.3,lower.tail=TRUE) # alternative way for binomial distribution
## [1] 0.952651
mean(rbinom(n=10000,size=10,prob=0.3)<= 5) # simulated
## [1] 0.9495
library(dplyr)
library(ggplot2)
data.frame(heads = 0:10,
pmf = dbinom(x = 0:10, size = 10, prob = 0.3),
cdf = pbinom(q = 0:10, size = 10, prob = 0.3,
lower.tail = TRUE)) %>%
mutate(Heads = ifelse(heads <= 5, "<=5", "other")) %>%
ggplot(aes(x = factor(heads), y = cdf, fill = Heads)) +
geom_col() +
theme_minimal()+
geom_text(
aes(label = round(cdf,2), y = cdf + 0.01),
position = position_dodge(0.9),
size = 3,
vjust = 0) +
labs(title = "Probability of X <= 5 successes",
subtitle = "b(10, .3)",
x = "Successes (x)",
y = "probability")
kasus 3:
library(dplyr)
library(ggplot2)
data.frame(heads = 0:10,
pmf = dbinom(x = 0:10, size = 10, prob = 0.3),
cdf = pbinom(q = -1:9, size = 10, prob = 0.3,
lower.tail = FALSE)) %>%
mutate(Heads = ifelse(heads >= 5, ">=5", "other")) %>%
ggplot(aes(x = factor(heads), y = cdf, fill = Heads)) +
geom_col() +
theme_minimal()+
geom_text(
aes(label = round(cdf,2), y = cdf + 0.01),
position = position_dodge(0.9),
size = 3,
vjust = 0) +
labs(title = "Probability of X >= 5 successes",
subtitle = "b(10, .3)",
x = "Successes (x)",
y = "probability")
kasus 4:
25 * 0.3 # exact expected number of heads in 25 coin flips
## [1] 7.5
mean(rbinom(n = 10000, size = 25, prob = .3)) # exact expected number of heads in 25 coin flips
## [1] 7.4993
25 * 0.3 * (1 - 0.3) # variance
## [1] 5.25
var(rbinom(n = 10000, size = 25, prob = .3)) # variance
## [1] 5.163081
library(dplyr)
library(ggplot2)
data.frame(heads = 0:25,
pmf = dbinom(x = 0:25, size = 25, prob = 0.3)) %>%
mutate(Heads = ifelse(heads == 7, "7", "other"))%>%
ggplot(aes(x = factor(heads), y = pmf, fill = Heads)) +
geom_col() +
theme_minimal()+
geom_text(
aes(label = round(pmf,2), y = pmf + 0.01),
position = position_dodge(0.9),
size = 3,
vjust = 0) +
labs(title = "Probability of X = x successes.",
subtitle = "b(25, .3)",
x = "Successes (x)",
y = "probability")
kasus 5:
kasus 5: jika kita tau rata” sales nya 3 per minggu nyari tau probabiliti 2 sampe 4
library(ggplot2)
library(dplyr)
# Using cumulative probability
ppois(q = 4, lambda = 3, lower.tail = TRUE) -
ppois(q = 2, lambda = 3, lower.tail = TRUE)
## [1] 0.3920732
kasus 6: dia memukul bola 500 kali, berapa probabilitasnya
library(ggplot2)
library(dplyr)
ppois(q=150,lambda=.300*500,lower.tail=TRUE) # probability of x <= 150
## [1] 0.5216972
dpois(x=150,lambda=.300*500) # probability of x = 150
## [1] 0.03255541
ppois(q=150,lambda=.300*500,lower.tail=FALSE) # probability of x > 150
## [1] 0.4783028
sebaran datanya mirip/ ga beda jauh.
rand.unif <- runif(100, min=-3, max=5) # ten random numbers between minus one and five
hist(rand.unif, col = "cornflowerblue", # plot the results as a histogram
freq = FALSE,
xlab = 'x',
density = 20)
a <- -3
b <- 5
hist(rand.unif,
freq = FALSE,
col = "azure4",
xlab = 'x',
ylim = c(0, 0.2),
xlim = c(-4,6),
density = 20,
main = "Uniform distribution for the interval [-3,5]")
curve(dunif(x, min = a, max = b),
from = -4, to = 6,
n = 100000,
col = "green",
lwd = 2,
add = TRUE)
klo data uniform ga perlu pake hipotesis.
bentuknya lonceng
mydata <- rnorm(n=10000, mean=100, sd=5)
mean(mydata)
## [1] 100.053
KESIMPULAN yang akan banyak digunakan yaitu normal distribusi, yg lainnya hanya perlu dipahamkan. chi square : kumpulan dari x1,x2,…,xn t dist : ketika kita mau nganalisa satu normal dist trs dibandingin sm chi square f dist : dipake pas mau bandingin sebaran data chi sama t
kerjakan setiap latihan yang ada (bab1) kerjakan di rpubs langsung soalnya saja