In this study we explored the mode of genetic inheritance of Varroa destructor, a parasitic mite of honeybees, so far known as a haplodiploid species with a arrhenotokous parthenogenesis reproductive mode. The mite shows contrasting phenomena of highly inbreeding life style (sib-mating), yet maintaining relatively high genetic variation.

The experimental setup consisted of a three-generational pedigree.
Sample size: 30 families, total of 223 individuals.
3 different colonies, from OIST apiary.
For details of mite collection and pedigree construction, please see the original manuscript.
All biosamples are available in Sequence Read Archive (SRA) under the accession PRJNA794941.
All data are available and reproducible from the GitHub page.

load libraries

library("tidyverse")
library("plyr")
library("dplyr")
library("ggplot2")
library("scales")
library("ggpubr")
library("gridExtra")
library("grid")
library("GGally")
library("vcfR") # for extracting genotype data from a vcf file
library("data.table")
library("stringr")
library("janitor")
library("gmodels")
library("rstatix")
library("freqtables")
library("broom")
library("DescTools") # for the Goodness-of-Fit test, 3 variables; and for Breslow-Day Test for Homogeneity of the Odds Ratios
library("vcd") # for the woolf test testign log odds for each pair
library("patchwork") # for gathering the plots
library("fuzzyjoin") # to join tables based on a string in a column
#library("aspi") # Repeated G–tests of Goodness-of-Fit, work only for 2 variables..
#library("RVAideMemoire") # Repeated G–tests of Goodness-of-Fit, work only for 2 variables...
#library("InfoTrad")
#library("ggthemes") # for more colors in the ggplot
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE,
                     fig.width = 10,
                      fig.asp = 0.4,
                      out.width = "100%")
#fig.width = 6,fig.asp = 0.8,out.width = "100%"

Load Variant Call Format (VCF) file.

Extract genotypes for each site and individual. The metadata for all samples can be found in here.

vcf <- read.vcfR("/Users/nuriteliash/Documents/GitHub/varroa-linkage-map/data/vcf_filter/Q40BIALLDP16HDP40mis.5Chr7/Q40BIALLDP16HDP40mis.5Chr7.recode.vcf", verbose = FALSE )
vcf
## ***** Object of Class vcfR *****
## 223 samples
## 7 CHROMs
## 35,169 variants
## Object size: 293.5 Mb
## 0 percent missing data
## *****        *****         *****
# extract the genotype for each site in each individual
gt <- extract.gt(vcf, element = "GT") 
gt <- as.data.frame(t(gt)) %>%
  rownames_to_column("ID")
#clean the ID names
gt$ID <- sub("_[^_]+$", "", gt$ID)

The individual ID name nomenclature is composed of 3 parts, separated by an underscore (_).
The first part is the family ID, the second is the unique name of the individual, and the the third part indicates its generation, sex, and its position in relation to the foundress mite (generation F0).

For example:
Individual ID 240_240a_son, belong to family 240,
has a unique name of 240a,
and is the son of the foundress mite of family 240, that is, its a male of F1 generation.

Individual ID 240_241b_grndat, belong to family 240,
has a unique name of 241b,
and is the granddaughter of the foundress mite of family 240, that is, its a female of F2 generation (and the daughter of 240_240a_son).


From the 223 individuals of 30 families, we excluded non adults mites (for which sex could not be determined for sure).
Eventually, we kept 144 individuals (adult males and females in F0, F1 and F2 generations) of 26 families, and all 35,169 biallelic sites.


For example, these are the first 6 sites (13565-25513) of chromosome (NW_019211454.1), in family number 240.

table <-  gt %>% 
  t() %>%
  as.data.frame() %>%
  row_to_names(row_number = 1) %>% 
  dplyr::select(contains(c("son", "dat", "fnd"))) # keep only adults of F0, F1 and F2 

table %>% select(contains(c("240_"))) %>% head()
##                      240_240a_son 240_241c_grnson 240_241b_grndat
## NW_019211454.1_13565          0/1            <NA>            <NA>
## NW_019211454.1_18037          0/0            <NA>            <NA>
## NW_019211454.1_20998         <NA>            <NA>            <NA>
## NW_019211454.1_24935         <NA>             0/0            <NA>
## NW_019211454.1_25470         <NA>            <NA>            <NA>
## NW_019211454.1_25513         <NA>            <NA>            <NA>
##                      240_241a_grndat 240_241_dat 240_240_fnd
## NW_019211454.1_13565             0/1         0/1         0/0
## NW_019211454.1_18037             0/0         0/0         0/0
## NW_019211454.1_20998             0/0         0/0         0/0
## NW_019211454.1_24935             0/0         0/0         0/0
## NW_019211454.1_25470             0/0         0/0         0/0
## NW_019211454.1_25513             0/0        <NA>         0/0

The family members include:

  • F0 generation: foundress female mite (240_240_fnd).
  • F1 generation: adult son (240_240a_son) and adult daughter (240_241_dat) of the foundress F0 mite. Because in varroa mite reproduction is via sib-mating, these brother and sister will also mate, to produce the F2 generation.
  • F2 generation: adult grandson (240_241c_grnson) and two adult granddaughters (240_241a_grndat and 240_241b_grndat), of the foundress F0 mite.

Each individual, is genotyped for each site with one of the three genotypes:

  • Homozygote for the reference allele = 0/0
  • Heterozygote = 0/1
  • Homozygote for the alternate allele = 1/1
  • “NA” = site genotype not determined

For more information about the mapping, variant calling and variant filtration, please see the Snakemake pipeline in here.


In the following code we viewed the F2 generation genotype of all possible nine crosses between F1 male and females.

  • Control crosses of homozygotic sites: The first four crosses were aimed mainly to detect false sites:
    1. F1 male (0/0) x female (0/0)
    2. F1 male (1/1) x female (1/1)
    3. F1 male (0/0) x female (1/1)
    4. F1 male (1/1) x female (0/0)

Then we crossed heterozygotic sites, to explore the mode of genetic inheritance in varroa mite:

  • Homozygotic male, with heterozygotic female:
    1. F1 male (0/0) x female (0/1)
    2. F1 male (1/1) x female (0/1)
  • Heterozygotic male, with homozygotic female:
    1. F1 male (0/1) x female (0/0)
    2. F1 male (0/1) x female (1/1)
  • Heterozygotic male, with heterozygotic female:
    1. F1 male (0/1) x female (0/1)

In addition to the fixed F1 genotypes, we also “fixed” the F0 female genotype to match that of her son (F1 male), so we can phase the alleles of the F1 generations.
“Phasing alleles” is the process of determine the parental origin of each allele.
for heterozygotic genotype phasing is critical, as it allows the tracking of the allele from one generation tot he next.

Varroa mite was known to have a haplo-diploid reproductive system, in which females are produced sexually, and males are produced in an arrhenotokous haplodiploid system.

For each crossing we observed the F2 genotype proportion, and compared it to the proportion of 3 known reproductive modes:

  • Haploid parthenogenesis: unfertilized egg develops into haploid male ♂ (n). [no paternal inheritance]
  • Automixis, Diploid parthenogenesis: two oocytes from mother fuse into a diploid zygote (2n).[no paternal inheritance] 
  • Sexual reproduction: fertilized egg develops into diploid female ♀ (2n).[paternal and maternal inheritance]
# set the families (include only families with at least one adult F2)
family = grep("grndat|grnson",gt$ID, value=TRUE) %>%
  str_extract("[^_]+")  %>%
  unique()

# or, include all F2 samples, but indicate if they have an adult sister (may indicate if the F1 female was fertilized)
#family = grep("grn",gt$ID, value=TRUE) %>%
#  str_extract("[^_]+")  %>%
#  unique()

‘Sanity check’: Crossing homozygotic sites (crosses 1-4)

(1) F1 male (0/0) x female (0/0)

we expect all F2 offspring to be homozygotic (0/0) like their parents (F1)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "0/0")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "0/0")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "0/0")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(1, 0, 0))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(1, 0, 0))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(1, 0, 0))

modes = rbind(haploid,automixis,sexual)
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal   17558
## 2 female_normal 35422
## 3 male_abnormal 18520
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (0/0) x female (0/0)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (0/0) x female (0/0)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1)) + 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (0/0) x female (0/0)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

(2) F1 male (1/1) x female (1/1)

we expect all F2 offspring to be homozygotic (1/1) like their parents (F1)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "1/1")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "1/1")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "1/1")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(0, 0, 1))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(0, 0, 1))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(0, 0, 1))

modes = rbind(haploid,automixis,sexual)
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal   10491
## 2 female_normal 23406
## 3 male_abnormal 14078
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (1/1) x female (1/1)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (1/1) x female (1/1)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (1/1) x female (1/1)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

(3) F1 male (0/0) x female (1/1)

We expect zero sites for this cross, because the F1 are siblings.
Indeed, there are only 23 sites in the F2 pooled females, and 14 for the F2 pooled males:

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "0/0")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "0/0")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "1/1")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

pooled_obs_count
## # A tibble: 2 × 2
## # Groups:   type [2]
##   type          count
##   <fct>         <dbl>
## 1 female_normal    23
## 2 male_normal      14

(4) F1 male (1/1) x female (0/0)

We expect zero sites for this cross, since there is no paternal inheritance to the males.
Indeed, there are only 24 sites in the F2 pooled females, and 15 for the F2 pooled males:

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "1/1")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "1/1")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "0/0")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

pooled_obs_count
## # A tibble: 2 × 2
## # Groups:   type [2]
##   type          count
##   <fct>         <dbl>
## 1 female_normal    24
## 2 male_normal      15

Crossing homozygotic male, with heterozygotic female

(5) F1 male (0/0) x female (0/1)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "0/0")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "0/0")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "0/1")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(0.5, 0, 0.5))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(0, 1, 0))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(0.5, 0.5, 0))

modes = rbind(haploid,automixis,sexual)
 #   right_join(together, by = c("gt", "sex"),multiple = "all") %>% 
  #select(c("sample", "gt","sex","total" ,"mode", "prop")) 
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal    5768
## 2 female_normal  5263
## 3 male_abnormal   261
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (0/0) x female (0/1)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (0/0) x female (0/1)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (0/0) x female (0/1)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

(6) F1 male (1/1) x female (0/1)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "1/1")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "1/1")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "0/1")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(0.5, 0, 0.5))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(0, 1, 0))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(0, 0.5, 0.5))

modes = rbind(haploid,automixis,sexual)
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal    5965
## 2 female_normal  5450
## 3 male_abnormal   190
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (1/1) x female (0/1)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (1/1) x female (0/1)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (1/1) x female (0/1)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

Crossing heterozygotic male, with homozygotic female

The former crosses of heterozygotic females (5 and 6) show that F2 males can be heterozygotic and carry two alleles, like their mother.
But are these sites real? and if they are, can they be transmitted to their daughters?

(7) F1 male (0/1) x female (0/0)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "0/1")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "0/1")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "0/0")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(1, 0, 0))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(1, 0, 0))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(0.5, 0.5, 0))

modes = rbind(haploid,automixis,sexual)
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal    2154
## 2 female_normal  2834
## 3 male_abnormal   219
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (0/1) x female (0/0)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (0/1) x female (0/0)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (0/1) x female (0/0)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

(8) F1 male (0/1) x female (1/1)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "0/1")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "0/1")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "1/1")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(0, 0, 1))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(0, 0, 1))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(0, 0.5, 0.5))

modes = rbind(haploid,automixis,sexual)
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal    1597
## 2 female_normal  2437
## 3 male_abnormal    59
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (0/1) x female (1/1)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (0/1) x female (1/1)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (0/1) x female (1/1)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

(9) F1 male (0/1) x female (0/1)

# define a list to put all the data frames in
obs <- list()

for (fam in family) {
 
obs[[fam]] <- table %>%
  dplyr::select(starts_with(fam)) %>%
    dplyr::filter_at(vars(matches("_fnd")), all_vars(. == "0/1")) %>% # force F0 female to be homo, like her son
  dplyr::filter_at(vars(matches("_son")), all_vars(. == "0/1")) %>%
  dplyr::filter_at(vars(matches("_dat")), all_vars(. == "0/1")) %>% 
  dplyr::select(contains("grn")) %>%
  tidyr::pivot_longer(everything())  %>% 
  dplyr::rename(sample = name, gt = value) %>%
  dplyr::count(sample, gt, .drop = FALSE) %>% 
  dplyr::filter(gt %in% c("0/0", "1/1", "0/1")) %>%
  mutate(n = as.numeric(n)) %>%
  group_by(sample) %>%
  mutate(total = as.numeric(sum(n))) %>%
  mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female"))
}

# bind all families together, to a final data frame containing all observed counts
observed <- do.call("rbind", obs) %>% mutate(sample = as.character(sample))
samples <- data.frame(sample = rep(unique(observed$sample), each =3), gt = rep(c("0/0", "0/1", "1/1")))
  
# define the group of abnormal males
abnorm_males = tibble(sample = c("240_241c_grnson", "400_401a_grnson","412_413a_grnson", "426_427b_grnson", "458_459a_grnson", "46_47d_grnson"), sex = "male", normality = "abnormal")

samples_obs <- left_join(samples, observed, by=c("sample","gt")) %>% mutate(sex = case_when(
    grepl("son", sample) ~ "male",
    grepl("dat", sample) ~ "female")) %>%
    group_by(sample) %>%
    replace(is.na(.), 0) %>%
    mutate(total = as.numeric(sum(n))) %>%
    dplyr::mutate(prop = n/total) %>%
    left_join(abnorm_males, by = "sample") %>% 
    dplyr::select(-sex.y) %>% 
    replace(is.na(.), "normal") %>%
    dplyr::rename(sex = sex.x) %>%
    unite("type", sex,normality, remove = FALSE)

# make a table with the expected proportions for the different modes of reproduction:
haploid = data.frame(mode = "haploid", gt = c("0/0", "0/1", "1/1"),prop = c(0.5, 0, 0.5))
automixis = data.frame(mode = "automixis", gt = c("0/0", "0/1", "1/1"),prop = c(0, 1, 0))
sexual = data.frame(mode = "sexual",gt = c("0/0", "0/1", "1/1"),prop = c(0.25, 0.5, 0.25))

modes = rbind(haploid,automixis,sexual)
# order the modes 
modes$mode <- factor(modes$mode, level=c("haploid", "automixis", "sexual"))

p_modes <- modes %>% 
    ggplot(aes(fill=gt, y=prop, x=mode)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("Possible reproductive modes") + 
    ylab("Genotype proportion") +
    labs(title = "Expected proportions") +
  labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
    scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
   theme(legend.position = "none")
  
# order the types for the observed proportions 
samples_obs$type <- factor(samples_obs$type, level=c("female_normal", "male_normal", "male_abnormal"))

# make a table with site count per pooled data, for the three "types"
pooled_obs_count =  samples_obs %>% 
    filter(gt =="0/0") %>%
    group_by(type) %>% 
    mutate(count = sum(total)) %>% 
    select(c(type,count)) %>% 
    unique()

p_samples <- samples_obs %>% dplyr::filter(total>=10) %>%
    ggplot(aes(fill=gt, y=prop, x=type)) + 
    geom_bar(position="fill", stat="identity", ) +
        scale_x_discrete("Genotype proportion", labels = c("Females","Normal 
males", "Abnormal 
males")) +
    xlab("Observed genotype proportion") + 
    ylab("Genotype proportion") +
    labs(title = "Observed proportions") + 
    labs(fill = "Genotype") + 
    theme_classic() +
    theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
     scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
     theme(legend.position = "none")

pooled_obs_count
## # A tibble: 3 × 2
## # Groups:   type [3]
##   type          count
##   <fct>         <dbl>
## 1 male_normal    3990
## 2 female_normal  5452
## 3 male_abnormal   415
# Create plot with legend
p_legend <- p_samples +theme(legend.position = "bottom")
# Create user-defined function, which extracts legends from ggplots
extract_legend <- function(my_ggp) {
  step1 <- ggplot_gtable(ggplot_build(my_ggp))
  step2 <- which(sapply(step1$grobs, function(x) x$name) == "guide-box")
  step3 <- step1$grobs[[step2]]
  return(step3)
}
# Apply user-defined function to extract legend
shared_legend <- extract_legend(p_legend)

# Draw plots with shared legend
grid.arrange(arrangeGrob(p_modes, p_samples,ncol = 2), shared_legend, nrow = 2, heights = c(10, 1),top = grid::textGrob("Pooled offspring genotype, crossing male (0/1) x female (0/1)", x = 0, hjust = 0))

# and plot each individual separately
samples_obs %>% filter(sex == "male") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Male offspring genotype, crossing male (0/1) x female (0/1)") + 
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="male", total>=10), aes(label=total), vjust = 0) +
   facet_wrap(~ type, scales ="free_x") +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

samples_obs %>% filter(sex == "female") %>% 
  dplyr::filter(total>=10) %>%
  ggplot(aes(fill=gt, y=prop, x=sample)) + 
    geom_bar(position="fill", stat="identity", ) +
    xlab("F2 offspring") + 
    ylab("Genotype proportion") +
    labs(title = "Female offspring genotype, crossing male (0/1) x female (0/1)") + 
   # geom_text(aes(label = n), position = position_stack(vjust = 0.5)) +
    geom_text(data = filter(samples_obs, gt == "1/1", sex =="female", total>=10), aes(label=total), vjust = 0) +
  labs(fill = "Genotype") +
  theme_classic()+scale_fill_manual(values=c("#ffbf00", "#66b032","#1982c4"))+
  theme(axis.text.x=element_text(angle = 45, hjust = 1))+ 
  theme(legend.position = "none")

Statistics

We did 2 types of a-parametric tests for independence, testing the predicted counts against the observed counts:

  • Cochran–Mantel–Haenszel Test (CMH) for Repeated Tests of Independence
  • Replicated G-test of goodness of fit

Cochran–Mantel–Haenszel Test for Repeated Tests of Independence

CMH Test for females

CMH Test for males

Replicated G-test of goodness of fit