# Load the Packages
library(tidyverse)
library(tidyquant)
1 Get Stock Prices and convert to Returns
Ra <- c("AAPL", "NVDA") %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Ra")
Ra
## # A tibble: 28 × 3
## # Groups: symbol [2]
## symbol date Ra
## <chr> <date> <dbl>
## 1 AAPL 2022-01-31 -0.0397
## 2 AAPL 2022-02-28 -0.0541
## 3 AAPL 2022-03-31 0.0575
## 4 AAPL 2022-04-29 -0.0971
## 5 AAPL 2022-05-31 -0.0545
## 6 AAPL 2022-06-30 -0.0814
## 7 AAPL 2022-07-29 0.189
## 8 AAPL 2022-08-31 -0.0312
## 9 AAPL 2022-09-30 -0.121
## 10 AAPL 2022-10-31 0.110
## # … with 18 more rows
2 Get baseline and convert to return
Rb <- "^IXIC" %>%
tq_get(get = "stock.prices",
from = "2022-01-01") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
col_rename = "Rb")
Rb
## # A tibble: 14 × 2
## date Rb
## <date> <dbl>
## 1 2022-01-31 -0.101
## 2 2022-02-28 -0.0343
## 3 2022-03-31 0.0341
## 4 2022-04-29 -0.133
## 5 2022-05-31 -0.0205
## 6 2022-06-30 -0.0871
## 7 2022-07-29 0.123
## 8 2022-08-31 -0.0464
## 9 2022-09-30 -0.105
## 10 2022-10-31 0.0390
## 11 2022-11-30 0.0437
## 12 2022-12-30 -0.0873
## 13 2023-01-31 0.107
## 14 2023-02-10 0.0115
3 Join the Two tables
RaRb <- left_join(Ra, Rb, by = c("date" = "date"))
RaRb
## # A tibble: 28 × 4
## # Groups: symbol [2]
## symbol date Ra Rb
## <chr> <date> <dbl> <dbl>
## 1 AAPL 2022-01-31 -0.0397 -0.101
## 2 AAPL 2022-02-28 -0.0541 -0.0343
## 3 AAPL 2022-03-31 0.0575 0.0341
## 4 AAPL 2022-04-29 -0.0971 -0.133
## 5 AAPL 2022-05-31 -0.0545 -0.0205
## 6 AAPL 2022-06-30 -0.0814 -0.0871
## 7 AAPL 2022-07-29 0.189 0.123
## 8 AAPL 2022-08-31 -0.0312 -0.0464
## 9 AAPL 2022-09-30 -0.121 -0.105
## 10 AAPL 2022-10-31 0.110 0.0390
## # … with 18 more rows
4 Calculate CAPM
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = Rb,
performance_fun = table.CAPM)
RaRb_capm
## # A tibble: 2 × 13
## # Groups: symbol [2]
## symbol ActivePr…¹ Alpha Annua…² Beta `Beta-` `Beta+` Corre…³ Corre…⁴ Infor…⁵
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 0.0848 0.0109 0.138 1.07 0.532 1.17 0.896 0 0.571
## 2 NVDA -0.03 0.0366 0.539 2.34 2.49 1.48 0.952 0 -0.07
## # … with 3 more variables: `R-squared` <dbl>, TrackingError <dbl>,
## # TreynorRatio <dbl>, and abbreviated variable names ¹ActivePremium,
## # ²AnnualizedAlpha, ³Correlation, ⁴`Correlationp-value`, ⁵InformationRatio
Which Stock Has a positively scewed distribution of returns
# AAPL and NVDA are Positively Skewed
RaRb_capm <- RaRb %>%
tq_performance(Ra = Ra,
Rb = NULL,
performance_fun = skewness)
RaRb_capm
## # A tibble: 2 × 2
## # Groups: symbol [2]
## symbol skewness.1
## <chr> <dbl>
## 1 AAPL 0.657
## 2 NVDA 0.150