# Q1
#This can be solved using Binomial distribution
?pbinom
## starting httpd help server ... done
pbinom(q= 12,
size = 20,
prob = .5,
lower.tail = TRUE #probabilities are P[X≤x] = 12
) -
pbinom(q = 8,
size = 20,
prob = .5,
lower.tail = TRUE #probabilities are P[X≤x] = 12
)
## [1] 0.6166897
# Q2
#This can be solved using Binomial dsitribution
plot(x = 0:13, # x variable
y = dbinom(x = 0:13, # y variable
size = 13,
prob = .2
),
main = 'Binomial Distribution (n=13, p=0.2)',
ylab = 'Probability',
xlab = '# Successes',
type = 'h',
lwd = 6
)

dbinom(x = 4:5, size = 13, prob = .2)
## [1] 0.15354508 0.06909529
sum(dbinom(x = 4:5, size = 13, prob = .2))
## [1] 0.2226404
round(x = sum(dbinom(x = 4:5, size = 13, prob = .2)),digits = 4)
## [1] 0.2226
# Q3
#This can be solved using Poisson distribution
sum(dpois(x = 0:3,lambda = 4.2))
## [1] 0.3954034
# Q4
#This can be solved using Hypergeomtric distribution
phyper(q = 1,m = 6,n = 17-6, k = 3,lower.tail = T)
## [1] 0.7279412
# Q5
#This can be solved using Hypergeomtric distribution
sum(dhyper(x = 2:6,m = 6,n = 19,k = 6))
## [1] 0.4528515
# Q6
pnorm(q= 1460,mean = 800,sd = 300) - pnorm(q= 1040,mean = 800,sd= 300)
## [1] 0.197952
# Q9
#This can be solved using Normal Distribution
Y <-qnorm(p= .91,mean = 75.8,sd = 8.1)
round(x= Y,digits = 0)
## [1] 87
# Q10
n <- 155
pi <- .61
MEAN <- n * pi
SD <- sqrt(pi * (1-pi) * n )
#X=96, pi=.61, n=155
dnorm(x = 96,mean = .61 * 155, sd= sqrt(.61 * .39 * 155 )
)
## [1] 0.06385071
pnorm(q = 96.5, mean = .61*155, sd = sqrt(.61 * .39 * 155) ) -pnorm(q = 95.5, mean = .61*155, sd = sqrt(.61 * .39 * 155) )
## [1] 0.06378274
dbinom( x = 96,size = 155,prob = .61
)
## [1] 0.06402352
#n, np and n(1-p) ar larger than 10
n <- 155
p <- .61
n * p> 10
## [1] TRUE
n * (1-p) > 10
## [1] TRUE