title: “Clase 2” author: “Helian A. Cruz Lopez” date: “2023-02-10” output: html_document

pruebas de hipotesis

problemas 1

se desea comparar dos genotipos de papa con base al rendimiento (biomasa de tuberculos), un ensayo utilizo dos variades (criolla y pastusa) involucrado ciento ochenta plantas de la primera variedad y 200 de la segunda. Los datos de rendimientos de la cosecha se presentan en los siguientes vectores

options(digits = 2)
Criolla = rnorm(n=180, mean=2.8, sd=2.0)
pastusa= rnorm(n=200, mean=3.0, sd=2.1)

Criolla
##   [1]  1.529  3.696  3.412  3.500 -0.018  2.344  6.183  1.844  0.960  7.278
##  [11]  5.728 -0.048  5.824  1.678  1.510  2.806  6.433  1.388  9.295  4.435
##  [21]  2.408  2.180  4.403  6.766  3.389  8.102  0.173 -0.398  3.393  1.446
##  [31]  2.762  5.677  4.061  0.912  0.532  6.720  2.000  4.004  2.277 -0.248
##  [41]  2.409 -1.257  2.130  1.951  0.083  2.406  6.685  0.973  2.969  3.416
##  [51]  2.196  0.280  0.296  2.471  3.381  3.424  1.473 -1.471  1.784  0.621
##  [61]  2.014  1.567  0.433  2.519  1.554  3.804  4.832  1.050  2.344  2.520
##  [71]  7.013  0.978  2.789  2.654  3.747  6.485  5.226  3.672  2.030  4.494
##  [81]  5.520  1.401  2.506  2.664  4.774  4.951  3.108  3.335  1.361  2.087
##  [91]  4.209  2.968  0.530  2.753  2.419  0.894 -0.173  0.665  3.757  0.933
## [101]  3.783  7.047  1.897  3.233  1.643  1.427  6.848  4.425  6.279  4.027
## [111]  7.303  4.905  4.027  2.908  1.422  3.471  3.835  0.092  3.393  5.771
## [121]  4.705  0.499  2.352  3.022  5.055  5.270  4.566  6.523  8.267  5.180
## [131]  3.765  1.398  1.800 -0.232  4.772  4.245  5.006  0.326  5.320  4.419
## [141]  3.401  3.573  3.558  0.962  1.736  4.087  5.641  1.084  2.735  2.277
## [151]  0.423  2.776  1.467  4.605  1.588 -1.264  4.163 -3.430  0.343  3.000
## [161]  1.923  3.697  3.260  3.891  2.084  2.443 -0.932  6.815  4.591  4.035
## [171]  1.015  1.730  2.770  1.553  3.664  3.837  6.958  2.326  2.031  2.173
pastusa
##   [1]  5.348 -0.129  4.886  4.599  2.882  4.574  2.297  1.282  3.921  0.069
##  [11]  2.688  2.693  2.372  5.012  1.785  2.475  2.476  2.478  5.974  1.901
##  [21]  5.664  4.729  0.652  7.461  0.362  4.204  1.571  3.301  3.391  2.113
##  [31]  3.474  0.850 -0.921  0.404  0.993  3.031  3.305  4.549  2.376  4.595
##  [41]  1.757  3.918  2.437  4.134  2.624  7.041  3.635  1.059  4.106  4.199
##  [51]  1.801  0.630  4.392  4.153  2.697  3.198  2.583  2.021 -1.091  0.931
##  [61]  1.129  1.621  0.307  5.683  2.741  4.130  6.362  1.860  4.088  4.672
##  [71]  3.702  2.269 -1.015  7.868  5.496  4.615 -0.360  3.579  3.646  6.840
##  [81]  2.954  3.939  2.951  0.982  7.122 -0.772 -1.159  2.049  5.884  4.104
##  [91]  5.646  2.994  5.968  2.873  1.599  1.880  4.725  1.224  0.486  3.362
## [101]  2.141  1.860  2.244  5.176  1.278  5.684  4.165  4.243  4.561  2.282
## [111]  1.909  2.108  1.720  5.001  6.283  3.335  2.300  1.101 -0.227  2.843
## [121]  0.757  3.084  1.125  5.357  3.163  1.919  0.141  3.359  1.682  5.250
## [131]  1.578  0.554 -0.395  3.043  3.071  2.863  1.005  2.696  2.711  3.982
## [141]  3.669  1.413  4.861  0.346  3.154  1.825  2.632  2.257  6.670  2.486
## [151]  5.784  6.239  1.814  0.734  2.629  1.413  2.750  5.513  2.535  3.678
## [161] -1.121 -0.110  2.091  6.170  2.059  2.701  0.362 -0.293  1.854  2.131
## [171]  3.702  5.008  3.762  4.465  3.029  0.708  3.384  6.318  2.351 -0.102
## [181]  6.186 -1.874  2.386  1.681  4.196  3.377  2.125  2.433  2.111  2.571
## [191]  3.718  2.344 -0.396  3.588  0.069  2.970  2.946  2.494  3.702  1.048
par( mfrow= c(1,2))
hist(Criolla)
abline(v=mean(Criolla), col="red", lwd=3)
hist(pastusa)
abline(v=mean(pastusa), col="red", lwd=3)

par(mfrow=c(1,2))
boxplot(Criolla, xlab="criolla", ylab="rto(kg/planta)")
boxplot(pastusa, xlab="pastusa", ylab="rto(kg/planta)")

summary(Criolla)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    -3.4     1.5     2.8     3.0     4.2     9.3
summary(pastusa)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    -1.9     1.7     2.7     2.8     4.1     7.9
library(psych)
## Warning: package 'psych' was built under R version 4.2.2
psych:: describe(Criolla)
##    vars   n mean  sd median trimmed mad  min max range skew kurtosis   se
## X1    1 180    3 2.1    2.8     2.9 1.9 -3.4 9.3    13 0.27     0.06 0.16
psych:: describe(pastusa)
##    vars   n mean  sd median trimmed mad  min max range skew kurtosis   se
## X1    1 200  2.8 1.9    2.7     2.8 1.8 -1.9 7.9   9.7 0.15    -0.28 0.14

disgresion

medA= 3.5; sdA=0.35
medB= 3.2; sdB=0.20
# ¿Cual seleccinar?
# Coeficiente de variacion cv=100 * sd/mean
cvA=100 * sdA/medA
cvB=100 * sdA/medB

cvA; cvB
## [1] 10
## [1] 11
100* sd(Criolla)/mean(Criolla)
## [1] 72
100* sd(pastusa)/mean(pastusa)
## [1] 68

conclusiones desde el analisis descriptivo

Ambos coefficientes de variacion son altos (>20). selecciono la variedad con el menos cv, en este caso la pastusa.

Analisis inferencias a traves de pruebas de hipotesis

\[H_0: \mu_(pastusa) = \mu_{criolla}\\\] \[H_a: \mu_(pastusa) \neq\mu_{criolla}\\\]

prueba student para comparar dos muestras independientes

Modalidad 1: Varianza iguales Modalidad 2: Varianza desiguales

Entonces tengo que comparar las varianzas de las dos variedades

prueba para comparacion de dos varianzas

\[H_0: \sigma^2_{pastusa}=\sigma^2: {criolla}\\ H_0: \sigma^2_{pastusa}\neq\sigma^2_{criolla}\]

var(pastusa)
## [1] 3.7
var(Criolla)
## [1] 4.5
vt=var.test(pastusa, Criolla)
vt$p.value
## [1] 0.15
ifelse(vt$p.value<0.025, "rechazo Ho", "No rechazao Ho")
## [1] "No rechazao Ho"
## prueba t-student para comparar las dos medias con varianzas iguales
pt=t.test(pastusa, Criolla, alternative = "t", var.equal = TRUE)
ifelse(pt$p.value <0.025, "rechazo Ho", "No rechazao Ho")
## [1] "No rechazao Ho"

Conclusion final: Los datos proporcionan evidencia estadistica a favor de la hipotesis, es decir, que estadisticamene que ambas variedades son igual de rentables. Cualquiera de las variedades es igual de buena