##Problema 1 Se desea comparar dos genótipos de papa con base al rendimiento (biomasa de tuberculos). Un ensayo utilizo dos variedades (criolla y pastusa) involucrando 180 plantas de la primera variedad y 200 de la segunda. Los datos de rendimiento y la cosecha se presentan en los siguientes vectores:
criolla = rnorm(n= 180, mean = 0.8, sd = 0.2)
pastusa= rnorm (n=200, mean = 3.0, sd = 2.1)
criolla
## [1] 0.7007838 0.8824019 0.9355406 0.8637726 0.7961465 1.1503280 1.0333997
## [8] 0.7191956 0.8854574 0.5811249 0.8221910 0.7948834 0.7079526 0.7947740
## [15] 0.9365268 0.6715135 0.7394762 0.9209445 1.0816148 0.7355044 0.8031073
## [22] 0.8743033 0.9027362 0.4402821 0.8944469 0.5918888 0.8446542 1.1945071
## [29] 0.8819105 0.9372101 0.8994391 0.7158668 0.7566257 1.1332736 0.7085340
## [36] 1.2795150 0.5541388 0.6706614 1.0422720 0.9390568 0.2021195 0.8388170
## [43] 0.9015339 1.0008830 0.7192430 0.8558335 1.0562105 0.6549985 0.4102765
## [50] 0.7730799 0.5996700 0.3156598 0.7633223 0.6357910 0.5611582 0.7347494
## [57] 0.9586377 0.8308963 1.2142866 1.0005627 0.6021166 0.6319059 0.7599975
## [64] 0.4684947 0.8585848 0.5730846 0.4918876 0.7762116 0.6480764 0.8998347
## [71] 0.8497462 0.7533498 0.8035981 0.8266881 0.9046438 0.7186082 1.0279067
## [78] 1.1051246 0.7820734 0.5790025 0.6777413 1.0691775 0.8743455 0.8403761
## [85] 1.0258833 0.4920227 0.5324092 0.7626553 1.2094652 0.8894684 0.6202474
## [92] 0.7302784 0.5640782 0.5457513 0.3038469 0.7990793 0.7200389 0.9153692
## [99] 0.8078853 0.8379623 0.6792853 0.4871195 0.6412298 0.6192070 0.8073603
## [106] 0.6150069 0.9787273 0.9056045 1.0971722 1.0711851 0.8538801 0.8364484
## [113] 1.0814288 0.5835257 0.6373133 0.8177192 0.9982199 1.0467269 0.7733983
## [120] 1.0096412 0.7071603 0.8936884 0.6505909 0.7900569 0.3607458 0.5728694
## [127] 0.8662210 0.2364193 0.8331212 0.7666200 1.0314767 0.7581734 1.3423125
## [134] 0.7796674 0.7252453 0.5973699 0.5876947 0.7920655 0.4730024 0.8404395
## [141] 0.8137929 0.3433865 1.0316581 1.0678504 0.6801868 0.7692909 0.7496359
## [148] 0.7623261 0.5841518 0.9022513 0.5936145 0.6723637 1.0412644 0.5320577
## [155] 0.6125958 0.9746167 0.9935632 0.5774735 0.7656493 0.9600277 1.1845003
## [162] 0.6759032 0.7631754 0.7696420 0.6744518 0.9517780 1.0604376 0.6171986
## [169] 1.0812501 1.0898270 0.2248980 0.5138352 0.6352574 0.8404416 0.5516559
## [176] 0.6287134 0.6257261 0.6881653 0.7809765 1.0055818
pastusa
## [1] 0.4370967630 1.0465577956 -0.5676085266 0.0009881845 4.0472585730
## [6] 3.1151579890 2.2679167228 4.1349846479 -0.5152438344 -0.7385874507
## [11] 2.0209734411 0.9261051531 0.6311021175 2.2684987477 4.8163672707
## [16] 1.9855995380 -3.9924211553 5.1638139195 4.7022500836 2.8009749959
## [21] 7.0466311184 -0.1601524737 6.9873064502 2.9828692191 2.7642779891
## [26] 6.3262429270 3.5098841454 0.3020331640 3.7656289891 4.8936347721
## [31] 7.0418952649 3.5822158038 1.5614286325 4.2239377714 6.8085562734
## [36] 3.0214505851 1.9600876574 4.2063604967 4.7406541956 1.2601380545
## [41] 5.7293057369 0.6647628508 2.1926951791 3.5155889731 6.1766353267
## [46] 3.4451234008 1.8303240545 3.8887445178 1.7821689214 4.0147682128
## [51] 1.6097355285 3.8326076000 4.8742952205 1.8111573716 2.1746635294
## [56] 2.6014766375 5.5081822421 0.1160333726 3.6344719747 1.2847601082
## [61] 2.8325261916 -2.0428499303 -0.2212728408 5.2799306615 3.9299843466
## [66] 2.1929160465 1.5524680664 2.9510624608 5.1293177616 3.8193793669
## [71] 5.5257180654 1.5844139568 5.0833246989 5.8624923130 -0.4174615118
## [76] 1.4757979689 1.3399022991 5.0608235615 6.6362378140 0.4525368970
## [81] 4.7259314274 3.4241635398 5.8738023728 2.0738518449 2.9454107908
## [86] 3.4484405817 -0.2887881913 7.4202511294 2.1636300899 2.2770889627
## [91] 5.6993128674 3.9244562624 2.2458863905 1.8315363612 0.8052238319
## [96] 4.3121211919 0.3031502839 4.9657766406 7.3481417302 3.9563406209
## [101] 3.2932466353 3.3846836146 5.6941333154 5.1509467530 3.2327503587
## [106] 2.2705987197 4.3303420516 5.0439712020 -2.0009058714 -0.1382802471
## [111] 1.2602029873 3.5616058638 2.4283489870 5.8717948792 2.4327675550
## [116] 2.8308693548 -0.6691763668 2.2887962185 5.3423276279 2.3833506632
## [121] 5.5734656070 4.5419997599 3.5739545557 1.1490998064 1.6530468020
## [126] 1.5724358137 4.0055637422 5.0583582400 6.8062396637 2.9943237617
## [131] 1.6619516957 4.3311375019 4.4872416165 2.6934518246 2.9499109461
## [136] 5.0008182303 2.1590718146 6.3174435997 5.8391936217 5.2496382921
## [141] 2.0733704379 1.7911562531 3.5986200539 5.1377249453 4.7055816097
## [146] -0.8197031186 0.3655074981 5.2981296454 1.8425351921 2.1354637934
## [151] 4.7218346810 1.5226465204 7.1987578494 4.3059237226 0.4149906716
## [156] 1.5173786699 3.4628351035 6.5339105194 2.4337733928 2.6694039633
## [161] 2.9221166820 2.2882637185 2.2043880608 3.3590139814 5.6068999095
## [166] 3.2447367258 1.1508657980 4.5768213448 0.4650370338 7.4886299901
## [171] 2.2591180913 4.1931541167 0.9614860670 1.2008072996 5.3485805971
## [176] 1.7469357968 5.7344699141 1.1556550028 3.1880579200 3.8329172594
## [181] -1.3924428473 1.9948613802 4.6919784803 4.2122472138 5.7322928783
## [186] 4.0610622049 4.7818212537 2.2803369475 3.5240054427 3.2184093006
## [191] 4.2342896741 3.5970445294 1.8239753931 3.7125387707 2.4735168090
## [196] 5.2257144279 3.5328651519 3.1183923992 3.8096204590 0.3694094146
par(mfrow=c(1,2))
hist(criolla, col="darkblue")
abline(v=mean(criolla), col="red", lwd=3)
hist(pastusa)
abline(v=mean(pastusa), col="red", lwd=3)
par(mfrow=c(1,2))
boxplot(criolla, main="Criolla", ylab="Rto (kg/plata)")
boxplot(pastusa, main="Pastusa", ylab="Rto (kg/plata)")
summary(criolla)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2021 0.6369 0.7803 0.7837 0.9049 1.3423
summary(pastusa)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.992 1.789 3.203 3.120 4.710 7.489
library(psych)
## Warning: package 'psych' was built under R version 4.2.2
psych::describe(criolla)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 180 0.78 0.21 0.78 0.79 0.2 0.2 1.34 1.14 -0.12 0.12 0.02
psych::describe(pastusa)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 200 3.12 2.08 3.2 3.16 2.21 -3.99 7.49 11.48 -0.23 -0.08 0.15
###Disgresion
medA= 3.5; sdA =0.35
medB= 3.2; sdB=0.20
# ¿Cual seleccionar?
# Coeficiente de variación cv= 100* sd/mean
cvA= 100* sdA/medA
cvB=100* sdB/medB
cvA; cvB
## [1] 10
## [1] 6.25
#Ambos coeficientes tienen el cv menor que 20, así que uso el promedio para seleccionar la variedad, se elige la A porque tiene mayor promedio
100* sd(criolla)/mean(criolla)
## [1] 26.58599
100 * sd(pastusa)/mean(pastusa)
## [1] 66.72364
#Conclusion desde el analisis descriptivo * Ambos coeficientes de variación son altos, mayores de 20% *Selecciono la variedad con el menor cv, en este caso la criolla
#Analisis inferencial a traves de pruebas de hipótesis
\[H_0: \mu_{pastusa}=\mu_{criolla}\\ H_a: \mu_{pastusa} \neq \mu_{criolla}\]
Pruebat-student para comparar dos muestras independientes
Entonces tengo que comparar las varianzas de las dos variedades
Prueba para comparación de dos varianzas
\[H_0: \sigma^2_{pastusa}=\sigma^2_{criolla}\\ H_a: \sigma^2_{pastusa}\neq \sigma^2_{criolla}\]
var(pastusa)
## [1] 4.333767
var(criolla)
## [1] 0.0434085
vt=var.test(pastusa, criolla)
vt$p.value
## [1] 0
ifelse(vt$p.value<0.025, "Rechazo Ho", "No rechazo Ho")
## [1] "Rechazo Ho"
Prueba t-student para comparar las dos medias con varianzas iguales
pt= t.test(pastusa, criolla,
alternative = "t",
var.equal= FALSE)
ifelse(pt$p.value <0.025, "Rechazo Ho", "No rechazo Ho")
## [1] "Rechazo Ho"
Conclusión final: los datos proporcionan evidencia estadística que permite afirmar que ulas variedades son iguales