criolla = rnorm(n = 180, mean = 2.8, sd = 0.2)
pastusa = rnorm(n = 200, mean = 3.0, sd = 0.21)
criolla
## [1] 2.724950 2.573584 3.075612 2.747270 2.856830 2.717645 2.615700 2.815126
## [9] 2.452048 2.394581 2.989804 2.660857 2.931842 2.781141 2.470604 2.584716
## [17] 3.105530 2.853504 2.899372 2.869759 2.909966 2.884403 2.566691 2.752378
## [25] 2.926657 2.974275 2.598321 2.914728 2.820083 2.821035 2.826352 2.782637
## [33] 2.925307 2.855061 2.851667 2.907681 2.754391 2.576814 2.352024 2.665210
## [41] 2.960041 2.932055 3.144620 2.674022 2.827842 2.696974 2.819886 3.078669
## [49] 2.952031 2.423440 2.681621 2.784913 2.997341 2.908242 2.452285 2.992675
## [57] 2.642412 2.640403 2.864182 2.823769 2.796922 2.511943 2.638974 2.880353
## [65] 2.785218 2.839074 2.776576 3.006160 3.171759 2.709905 2.860986 2.605290
## [73] 2.607612 2.901960 2.989382 2.702520 2.744208 2.917161 2.684907 2.851447
## [81] 2.780515 3.012128 2.806680 2.693794 2.988819 2.806176 3.038758 2.882350
## [89] 2.732737 2.841041 2.726706 2.527750 2.984335 2.594816 2.811915 2.771014
## [97] 2.967545 2.964874 2.834649 2.540232 3.101104 2.939251 2.678626 2.616381
## [105] 2.906330 2.713503 2.990670 2.609170 2.801851 2.712964 2.575624 2.547424
## [113] 2.842200 2.629230 3.036389 2.693613 3.004864 2.429253 2.565981 3.121703
## [121] 2.857145 2.565847 2.689153 2.369629 3.134987 2.701322 2.676243 2.862805
## [129] 2.850434 2.708406 3.245748 3.015932 2.921517 2.886813 2.735964 3.130192
## [137] 2.731206 2.675769 2.674361 2.863281 2.886214 2.734143 2.776381 3.046883
## [145] 2.857812 2.780190 2.574268 2.790956 2.643647 2.638428 2.781098 2.554302
## [153] 2.717056 2.678774 3.013837 2.970285 2.797838 2.789177 2.844484 2.299218
## [161] 2.767291 2.912863 2.694693 2.790662 2.802359 2.722897 3.319915 2.713047
## [169] 2.731112 3.013226 2.790190 2.750277 2.686877 2.829606 2.798225 2.666676
## [177] 2.937322 2.667928 2.622975 2.648598
pastusa
## [1] 2.866055 3.022910 2.702665 2.861751 2.739016 3.084168 2.729257 3.089304
## [9] 3.433951 3.173040 3.318877 3.482628 2.995612 3.181178 2.755614 2.914963
## [17] 3.031949 3.549931 2.461444 2.669696 2.826140 3.446262 2.829084 3.024254
## [25] 3.238594 3.018165 2.858926 3.105381 3.274514 3.293180 2.882514 3.397638
## [33] 3.079094 2.899366 3.303744 3.285201 2.895590 3.164784 2.895547 3.261326
## [41] 2.951820 3.244750 2.821739 3.252633 2.843295 2.992302 2.814213 2.568701
## [49] 3.206377 3.242570 3.208440 2.922251 2.991174 2.835888 2.958578 3.178927
## [57] 3.210703 3.127911 3.244978 3.171005 3.042719 2.724126 3.181167 2.930698
## [65] 3.162255 3.177334 2.907654 2.931986 2.967734 3.164580 2.990597 2.811453
## [73] 2.893929 3.120140 2.899353 3.336371 2.569233 2.740898 3.175986 3.186579
## [81] 3.296028 3.210203 3.048602 3.102708 3.008153 3.150027 3.511439 2.641305
## [89] 2.867217 3.045771 3.423707 3.196090 3.082538 2.917443 3.073769 3.208869
## [97] 3.066499 3.069477 3.184726 3.062016 2.951745 3.148943 2.666664 3.314750
## [105] 3.303070 2.631016 2.979631 2.774279 3.083697 2.978059 2.936817 3.099207
## [113] 2.639585 3.152711 2.846890 2.756145 2.907317 2.719262 2.748396 3.514788
## [121] 3.124454 3.477122 3.061563 3.477780 2.992476 2.975362 3.023924 3.047634
## [129] 3.174912 3.204104 3.089249 2.856573 2.987900 2.794150 3.091172 2.957653
## [137] 3.096327 3.039165 3.122070 2.827332 2.995516 2.940319 3.029881 3.148379
## [145] 2.913339 2.693601 3.044590 2.882406 2.834900 3.235857 2.663017 2.637169
## [153] 2.743991 2.724440 2.760930 3.084617 2.657930 2.745232 2.690368 3.439809
## [161] 2.784291 3.234061 3.237913 2.777576 2.779665 3.136258 2.899312 3.286570
## [169] 2.738642 3.261198 2.648566 3.038427 2.945621 2.644088 2.949306 2.983735
## [177] 3.199479 3.043858 2.958728 2.868361 2.951924 2.610033 3.023757 3.306288
## [185] 2.787088 3.158631 3.359719 2.763434 3.091458 2.805712 3.009583 2.650910
## [193] 2.734540 3.120715 2.629787 3.231439 3.241266 3.235618 3.344909 3.120058
par(mfrow=c(1,2))
hist(criolla, col='darkblue')
abline(v=mean(criolla,col='red' , lwd=3))
hist(pastusa, col = 'darkgreen')
abline(v=mean(pastusa,col='red' , lwd=3))
par(mfrow=c(1,2))
boxplot(criolla, main='criolla' , ylab='Rto (kg/planta)')
boxplot(pastusa, main='pastusa' , ylab='Rto (kg/planta)')
summary(criolla)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.299 2.678 2.790 2.790 2.908 3.320
summary(pastusa)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.461 2.846 3.024 3.015 3.178 3.550
library(psych)
## Warning: package 'psych' was built under R version 4.2.2
psych :: describe(criolla)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 180 2.79 0.18 2.79 2.79 0.17 2.3 3.32 1.02 0 0.16 0.01
psych :: describe(criolla)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 180 2.79 0.18 2.79 2.79 0.17 2.3 3.32 1.02 0 0.16 0.01
### Digresion
medA = 3.5; sdA = 0.35
medB = 3.2; sdB = 0.20
# ¡cual seleccionar?
#coeficiente de variacion cv = 100 * ad/mean
cvA = 100 * sdA/medA
cvB = 100 * sdB/medB
cvA; cvB
## [1] 10
## [1] 6.25
##analisis inferencial a traves de pruebas de hiptesis \[H_0: \mu_{pastusa} = \mu_{criolla} \\ H_a: \mu_{past usa} = \mu_{criolla}\]
Prueba t-Student para comparar dos muestras indepemdientes
Prueba para comparacion de dos varianzas
\[H_0: \sigma^2_{pastuda} = \sigma^2_{criolla} \\ H_a: \sigma^2__{pastuda} \neq \sigma^2_{criolla} \]
var(pastusa)
## [1] 0.05030329
var(criolla)
## [1] 0.03130239
vt = var.test(pastusa, criolla)
vt$p.value
## [1] 0.001277224
ifelse(vt$p.value<0.025 , 'Rechazo Ho' , "No Rechazo Ho")
## [1] "Rechazo Ho"
Prueba t-Student para comparar las dos medias con varianzas iguales
pt = t.test(pastusa, criolla, alternative = 't' , var.equal = TRUE)
ifelse(pt$p.value < 0.025, 'Rechazo Ho' , 'No Rechazo Ho')
## [1] "Rechazo Ho"
Coclusion final: los datos proporcionan evidencia estadistica en contra de la hipotesis nula, es decir, que estadisticamente se consideran ambas variedades como de diferente rendimiento. Una de las variedades es mejor que la otra.