Lab 3 Assignment

Author

Kathleen Strachota

#load packages
library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.3.5      ✔ purrr   1.0.1 
✔ tibble  3.1.6      ✔ dplyr   1.0.10
✔ tidyr   1.3.0      ✔ stringr 1.5.0 
✔ readr   2.1.3      ✔ forcats 0.5.1 
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(lubridate)

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

    date, intersect, setdiff, union
library(ggsci)
library(patchwork)

Essentials:

1.) Read in https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-05-04/water.csv check the format of the date column and change it using lubridate so it is correct

#read in the water data
water <-read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-05-04/water.csv')
Rows: 473293 Columns: 13
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (9): report_date, status_id, water_source, water_tech, facility_type, co...
dbl (4): row_id, lat_deg, lon_deg, install_year

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(water)
spc_tbl_ [473,293 × 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ row_id       : num [1:473293] 3957 33512 35125 37760 38118 ...
 $ lat_deg      : num [1:473293] 8.073 7.374 0.773 0.781 0.779 ...
 $ lon_deg      : num [1:473293] 38.6 40.5 34.9 35 35 ...
 $ report_date  : chr [1:473293] "04/06/2017" "08/04/2020" "03/18/2015" "03/18/2015" ...
 $ status_id    : chr [1:473293] "y" "y" "y" "y" ...
 $ water_source : chr [1:473293] NA "Protected Spring" "Protected Shallow Well" "Borehole" ...
 $ water_tech   : chr [1:473293] NA NA NA NA ...
 $ facility_type: chr [1:473293] NA "Improved" "Improved" "Improved" ...
 $ country_name : chr [1:473293] "Ethiopia" "Ethiopia" "Kenya" "Kenya" ...
 $ install_year : num [1:473293] NA 2019 NA NA NA ...
 $ installer    : chr [1:473293] "Private-CRS" "WaterAid" NA NA ...
 $ pay          : chr [1:473293] NA NA NA NA ...
 $ status       : chr [1:473293] NA NA NA NA ...
 - attr(*, "spec")=
  .. cols(
  ..   row_id = col_double(),
  ..   lat_deg = col_double(),
  ..   lon_deg = col_double(),
  ..   report_date = col_character(),
  ..   status_id = col_character(),
  ..   water_source = col_character(),
  ..   water_tech = col_character(),
  ..   facility_type = col_character(),
  ..   country_name = col_character(),
  ..   install_year = col_double(),
  ..   installer = col_character(),
  ..   pay = col_character(),
  ..   status = col_character()
  .. )
 - attr(*, "problems")=<externalptr> 
water2 <-water 
water2$report_date <- mdy(water2$report_date)
str(water2)
spc_tbl_ [473,293 × 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
 $ row_id       : num [1:473293] 3957 33512 35125 37760 38118 ...
 $ lat_deg      : num [1:473293] 8.073 7.374 0.773 0.781 0.779 ...
 $ lon_deg      : num [1:473293] 38.6 40.5 34.9 35 35 ...
 $ report_date  : Date[1:473293], format: "2017-04-06" "2020-08-04" ...
 $ status_id    : chr [1:473293] "y" "y" "y" "y" ...
 $ water_source : chr [1:473293] NA "Protected Spring" "Protected Shallow Well" "Borehole" ...
 $ water_tech   : chr [1:473293] NA NA NA NA ...
 $ facility_type: chr [1:473293] NA "Improved" "Improved" "Improved" ...
 $ country_name : chr [1:473293] "Ethiopia" "Ethiopia" "Kenya" "Kenya" ...
 $ install_year : num [1:473293] NA 2019 NA NA NA ...
 $ installer    : chr [1:473293] "Private-CRS" "WaterAid" NA NA ...
 $ pay          : chr [1:473293] NA NA NA NA ...
 $ status       : chr [1:473293] NA NA NA NA ...
 - attr(*, "spec")=
  .. cols(
  ..   row_id = col_double(),
  ..   lat_deg = col_double(),
  ..   lon_deg = col_double(),
  ..   report_date = col_character(),
  ..   status_id = col_character(),
  ..   water_source = col_character(),
  ..   water_tech = col_character(),
  ..   facility_type = col_character(),
  ..   country_name = col_character(),
  ..   install_year = col_double(),
  ..   installer = col_character(),
  ..   pay = col_character(),
  ..   status = col_character()
  .. )
 - attr(*, "problems")=<externalptr> 

2 Read in some data from Justin’s PhD!

bzcoral<-read.csv('https://raw.githubusercontent.com/jbaumann3/BIOL234_Biostats_MHC/main/coralcover.csv')
head(bzcoral)
  site       type lat transect diver cc_percent
1    1  Back Reef   3        1     4  5.8435758
2    1  Back Reef   3        2     4  0.9505263
3    1  Back Reef   3        3     4  5.2423389
4    1  Back Reef   3        4     5  5.0040475
5    1  Back Reef   3        5     5  5.8954916
6    2 Patch Reef   3        1     4  5.2826190

3 Look at the data and generate a hypothesis to test (X, Y, and/or Z has no effect on coral cover (cc_percent), for example). cc_percent is the only numerical variable we care about here! Everything else is categorical. Write your hypothesis in BOLD below.

\(\mathbf{H_0}:\) Reef type is not associated with mean coral cover (cc_percent)

\(\mathbf{H_A}:\) Reef type is associated with the mean amount of coral cover

4 Filter our the columns that you are not using for your hypothesis test

bzcoral2 <- select(bzcoral, type, cc_percent)

head(bzcoral2)
        type cc_percent
1  Back Reef  5.8435758
2  Back Reef  0.9505263
3  Back Reef  5.2423389
4  Back Reef  5.0040475
5  Back Reef  5.8954916
6 Patch Reef  5.2826190

5 Using the pipe, %>%, group your data and calcualte the mean(s) you need for your visual hypothesis test

bzcoral3 <- bzcoral2 %>%
  group_by(type) %>%
  summarize(mean_cc = mean(cc_percent), sd = sd(cc_percent), n = n(), se = sd/sqrt(n))

head(bzcoral3)
# A tibble: 3 × 5
  type       mean_cc    sd     n    se
  <chr>        <dbl> <dbl> <int> <dbl>
1 Back Reef    11.9   9.52    29 1.77 
2 Nearshore     3.16  2.25    18 0.531
3 Patch Reef   12.7  11.5     30 2.11 

6 Graph your results! Means + errorbars required :) Make a nice, easy to see graph with clear labels and text

ggplot(bzcoral3, aes(x = type, y = mean_cc, color = type)) +
  geom_point() +
  geom_jitter(data = bzcoral2, aes(x = type, y = cc_percent, color = type), alpha = 0.3, size = 0.3) +
  geom_errorbar(data = bzcoral3, aes(x = type, ymin = mean_cc-se, ymax = mean_cc+se), width = 0.2) +
  scale_color_lancet() +
  theme_classic() +
  labs(x = "Reef Type", y = "Mean Coral Cover", title = "Mean Coral Cover by Reef Type") +
  theme(plot.title = element_text(hjust = 0.5))

7 Assess your hypothesis! What does your graph show (Note: We did not do stats, so please do not say ‘significant’)

By looking at the graph, we can probably reject the null hypothesis that there is no association between reef type and mean coral cover. (The mean coral cover of Nearshore reefs looks to be smaller than the mean coral cover of Back Reef and Patch Reef.)

Depth

1: Read in intertidal transect data. View it, identify the columns that contain species/cover items and pivot from wide to long format!

op<-read.csv('https://raw.githubusercontent.com/jbaumann3/BIOL234_Biostats_MHC/main/Ocean_Point_Data%202018.csv')
head(op)
  Number  trans_description year tidal_ht_m tidal_ht_cat_num bare_rock calothr
1      0 a_cobble_protected 2017      -0.13                1         0       0
2      0 a_cobble_protected 2017      -0.13                1         5       0
3      0 a_cobble_protected 2017      -0.13                1         5       0
4      0 a_cobble_protected 2018       0.38                2        10      12
5      0 a_cobble_protected 2018       0.38                2         0      93
6      0 a_cobble_protected 2018       0.78                2         0      65
  semibal mytilus Halichondria Spongomorpha chaetomo ulva_lac ascophyl lamin_di
1       0       0            0            0        0        0        0        0
2       0       0            0            0        0        5        0        0
3       0       0            0            0        0        0        0        0
4       8       0            0            0        0        0       10        0
5       7       0            0            0        0        0        0        0
6      30       0            0            0        0        0        0        0
  lamin_sa fucus_spir fucus_vesic fucus_dist fucus_sp chondrus mastocar
1        0          0           0          0        0        0       40
2        0          0           5          0        0        0       20
3        0          0           5          0        0        0       20
4        0          0          60          0        0        0        0
5        0          0           0          0        0        0        0
6        0          0           5          0        0        0        0
  petrocel corralina ceramium lithothamn Enteromorpha tectura litt_sax litt_lit
1        0         2        0         58            0       0        0       64
2        0         5        0         60            0       0        0        0
3        0        15        0         55            0       0        0        0
4        0         0        0          0            0       0        0      112
5        0         0        0          0            0       0        0      112
6        0         0        0          0            0       0        0        0
  litt_obt nucella carcinus Cancer.crabs
1        0       0        0            0
2        0       0        0            0
3       16       0        0            0
4       80       0        0            0
5       16       0        0            0
6        0       0        0            0
long_op <- op %>%
  pivot_longer(bare_rock:Cancer.crabs, names_to = "species", values_to = "abundance")

head(long_op)
# A tibble: 6 × 7
  Number trans_description   year tidal_ht_m tidal_ht_cat_num species  abundance
   <int> <chr>              <int>      <dbl>            <int> <chr>        <dbl>
1      0 a_cobble_protected  2017      -0.13                1 bare_ro…         0
2      0 a_cobble_protected  2017      -0.13                1 calothr          0
3      0 a_cobble_protected  2017      -0.13                1 semibal          0
4      0 a_cobble_protected  2017      -0.13                1 mytilus          0
5      0 a_cobble_protected  2017      -0.13                1 Halicho…         0
6      0 a_cobble_protected  2017      -0.13                1 Spongom…         0

2 Filter data such that we retain only ‘species’ that are animals. These include: Carcinus, Cancer Crabs, nucella, litt_obt, litt_lit, litt_sax, semibal. Everything else is either rock or algae. Please do this filter step AFTER you pivot to long format. Note: It is easier to do this when you are in wide format, but this is good practice! Ask questions if you need help :). Hint: The ‘|’ key is how you say ‘or’ in code :)

op_animals <- long_op %>%
  filter(species == "Cancer.crabs" | species == "carcinus" | species == "litt_lit" | species == "litt_obt" | species == "litt_sax" | species == "semibal" | species == "nucella")

head(op_animals)
# A tibble: 6 × 7
  Number trans_description   year tidal_ht_m tidal_ht_cat_num species  abundance
   <int> <chr>              <int>      <dbl>            <int> <chr>        <dbl>
1      0 a_cobble_protected  2017      -0.13                1 semibal          0
2      0 a_cobble_protected  2017      -0.13                1 litt_sax         0
3      0 a_cobble_protected  2017      -0.13                1 litt_lit        64
4      0 a_cobble_protected  2017      -0.13                1 litt_obt         0
5      0 a_cobble_protected  2017      -0.13                1 nucella          0
6      0 a_cobble_protected  2017      -0.13                1 carcinus         0

2 Using the same data–> rename the factors in the trans_description column based on wave exposure. a_cobble_protected is low, c_flat_profile and d_semi_expos are both moderate, e_exposed is high. Hint: use ifelse(). Justin can help!

op_animals$wave <- ifelse(op_animals$trans_description == "a_cobble_protected", "Low",
                          ifelse(op_animals$trans_description == "e_exposed", "High", "Moderate"))

head(op_animals)
# A tibble: 6 × 8
  Number trans_description   year tidal_ht_m tidal_ht_cat_num species  abundance
   <int> <chr>              <int>      <dbl>            <int> <chr>        <dbl>
1      0 a_cobble_protected  2017      -0.13                1 semibal          0
2      0 a_cobble_protected  2017      -0.13                1 litt_sax         0
3      0 a_cobble_protected  2017      -0.13                1 litt_lit        64
4      0 a_cobble_protected  2017      -0.13                1 litt_obt         0
5      0 a_cobble_protected  2017      -0.13                1 nucella          0
6      0 a_cobble_protected  2017      -0.13                1 carcinus         0
# … with 1 more variable: wave <chr>

3 Using the same data, make a simplified tidal height column. We want tidal height cat <4 to be ‘low’, >7 to be m’oderate’high’, and in between to be ‘intermediate’. Hint: You can use if_else for this as well!

op_animals$tidal_ht <- ifelse(op_animals$tidal_ht_cat_num < 4, "Low",
                              ifelse(op_animals$tidal_ht_cat_num > 7, "High", "Intermediate"))

4 Using the same dataframe, build 2 new dataframes, one calculating mean and error (standard error) for semibal (barnacle) abundance and one doing the same for nucella (whelk) abundance by tidal height and wave exposure (trans_description)

semibal <- op_animals %>%
  filter(species == "semibal") %>%
  group_by(wave, tidal_ht) %>%
  summarise(mean = mean(abundance), sd = sd(abundance), n = n(), se = sd/sqrt(n))
`summarise()` has grouped output by 'wave'. You can override using the
`.groups` argument.
semibal$species = "Semibal"

head(semibal)
# A tibble: 6 × 7
# Groups:   wave [2]
  wave  tidal_ht      mean    sd     n    se species
  <chr> <chr>        <dbl> <dbl> <int> <dbl> <chr>  
1 High  High          0     0       12  0    Semibal
2 High  Intermediate 32.4  30.4     18  7.17 Semibal
3 High  Low           6.11  7.82     9  2.61 Semibal
4 Low   High          0     0        9  0    Semibal
5 Low   Intermediate  2.24  5.24    17  1.27 Semibal
6 Low   Low           6.11  9.53     9  3.18 Semibal
nucella <- op_animals %>%
  filter(species == "nucella") %>%
  group_by(wave, tidal_ht) %>%
  summarise(mean = mean(abundance), sd = sd(abundance), n = n(), se = sd/sqrt(n))
`summarise()` has grouped output by 'wave'. You can override using the
`.groups` argument.
nucella$species = "Nucella"
head(nucella)
# A tibble: 6 × 7
# Groups:   wave [2]
  wave  tidal_ht      mean    sd     n    se species
  <chr> <chr>        <dbl> <dbl> <int> <dbl> <chr>  
1 High  High          0     0       12  0    Nucella
2 High  Intermediate  0     0       18  0    Nucella
3 High  Low           1.78  5.33     9  1.78 Nucella
4 Low   High          0     0        9  0    Nucella
5 Low   Intermediate  0     0       17  0    Nucella
6 Low   Low           0     0        9  0    Nucella

5 Plot barnacle and snail abundance + error across tidal heights & wave exposures. You can plot them both on the same graphs (merging your dataframes could help) or you can make multiple graphs and patchwork them together.

combined <- rbind(semibal, nucella)

ggplot(combined, aes(x = wave, y = mean, color = tidal_ht)) +
  facet_wrap(~species) +
  geom_point() +
  geom_errorbar(data = combined, aes(x = wave, ymin = mean-se, ymax = mean+se), width = 0.2) +
  scale_color_lancet() +
  theme_classic() +
  labs(y = "Count", x = "Wave exposure", color = "Tidal height")

6 Write a short interpretative statement. We didn’t run any stats, so avoid the word ‘significant.’ How do barnacles and whelk abundances appear to vary by tidal height and wave exposure? I do not need you to tell me anything about the ecology of the system, but feel free to do so if you’d like :) I just need you to interpret your graphs.

It looks like neither Nucella (welk) nor Semibal (barnacles) are found at high tidal heights. It appears that Semibal are most abundant where there is high wave exposure and intermediate tidal height. Looking at these graphs, the data shows that Nucella are found when there is both moderate wave exposure and intermediate or low tidal height or high wave exposure and low tidal height.