Spreadsheets and Data collection
1/12/23
\[x = 20 \pm 4\] \[\small\begin{matrix} std\ dev & difference & count \\ 1 & 0\leq x< 4 & 6757 \\ 2 & 4\leq x< 8 & 2739 \\ 3 & 8\leq x< 12 & 467 \\ 4 & 12\leq x< 16 & 37 \\ 5+ & 16\leq x & 0 \\ \end{matrix}\]
\[x = 20 \pm 4\] \[\small\begin{matrix} std\ dev & difference & count \\ 1 & 0\leq x< 4 & 73 \\ 2 & 4\leq x< 8 & 23 \\ 3 & 8\leq x< 12 & 4 \\ 4 & 12\leq x< 16 & 0 \\ 5+ & 16\leq x & 0 \\ \end{matrix}\]
\[20 \pm 8\]
\[25\pm 2\]
\[\eqalign{ \bar x &=& \sum_{i=1}^n \ x_i\\ data &=& [47, 40, 47, 59, 40] \\ sum &=& 233 \\ mean &=& \frac{233}{5} = 46.6\\ }\]
\[\eqalign{ std\ dev &=& \sqrt{\sum_{i=1}^n \frac{(x_i - \bar x)^2}{n-1}}=\sqrt{\frac{\displaystyle\sum_{i=1}^n x^2_i\ - n \bar x^2}{n-1}}\\ }\]
$$
\[\begin{matrix} (47 -46.6)^2 & 0.4^2 & 0.16\\ (40-46.6)^2 & 6.6^2 & 43.56\\ (47 -46.6)^2 & 0.4^2 & 0.16\\ (59 -46.6)^2 & 12.4^2 & 153.76\\ (40 -46.6)^2 & 6.6^2 & \underline{43.56}\\ & & 241.20 &\rightarrow & \sqrt{\frac{241.20}{4}} &=& 7.765\\ \end{matrix}\]$$
\[\begin{matrix} 47 & 47^2 & 2209\\ 40 & 40^2 & 1600\\ 47 & 47^2 & 2209\\ 59 & 59^2 & 3481 \\ \underline{40} & 40^2 & \underline{1600}\\ 233 & & 11099 & 11099.0\\ 46.6& 46.6^2& 5(2171.56) & 10857.8 &\sqrt{\frac{241.2}{4}} &=& 7.765\\ \end{matrix}\]
Carrard, Valerie, Bourquin, Céline, Berney, Sylvie, Schlegel, Katja, Gaume, Jacques, Bart, Pierre-Alexandre, Preisig, Martin, Schmid Mast, Marianne, & Berney, Alexandre. (2022). Dataset for the paper “The relationship between medical students’ empathy, mental health, and burnout: A cross-sectional study” published in Medical Teacher (2022) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5702895
'data.frame': 886 obs. of 20 variables:
$ id : int 2 4 9 10 13 14 17 21 23 24 ...
$ age : int 18 26 21 21 21 26 23 23 23 22 ...
$ year : int 1 4 3 2 3 5 5 4 4 2 ...
$ sex : int 1 1 2 2 1 2 2 1 2 2 ...
$ glang : int 120 1 1 1 1 1 1 1 1 1 ...
$ part : int 1 1 0 0 1 1 1 1 1 1 ...
$ job : int 0 0 0 1 0 1 0 1 1 0 ...
$ stud_h : int 56 20 36 51 22 10 15 8 20 20 ...
$ health : int 3 4 3 5 4 2 3 4 2 5 ...
$ psyt : int 0 0 0 0 0 0 0 0 0 0 ...
$ jspe : int 88 109 106 101 102 102 117 118 118 108 ...
$ qcae_cog : int 62 55 64 52 58 48 58 65 69 56 ...
$ qcae_aff : int 27 37 39 33 28 37 38 40 46 36 ...
$ amsp : int 17 22 17 18 21 17 23 32 23 22 ...
$ erec_mean: num 0.738 0.69 0.69 0.833 0.69 ...
$ cesd : int 34 7 25 17 14 14 45 6 43 11 ...
$ stai_t : int 61 33 73 48 46 56 56 36 43 43 ...
$ mbi_ex : int 17 14 24 16 22 18 28 11 26 18 ...
$ mbi_cy : int 13 11 7 10 14 15 17 10 21 6 ...
$ mbi_ea : int 20 26 23 21 23 18 16 27 22 23 ...
Call:
glm(formula = cesd ~ mbi_ex + mbi_cy + mbi_ea, data = dta)
Deviance Residuals:
Min 1Q Median 3Q Max
-29.828 -5.827 -1.205 5.135 34.262
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.97903 2.83422 3.521 0.000452 ***
mbi_ex 1.06435 0.06846 15.547 < 2e-16 ***
mbi_cy 0.13763 0.08333 1.652 0.098968 .
mbi_ea -0.46595 0.08129 -5.732 1.36e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 78.93939)
Null deviance: 116609 on 885 degrees of freedom
Residual deviance: 69625 on 882 degrees of freedom
AIC: 6391
Number of Fisher Scoring iterations: 2
age | year | sex | glang | part | job | stud_h | health | psyt | jspe | qcae_cog | qcae_aff | amsp | erec_mean | cesd | stai_t | mbi_ex | mbi_cy | mbi_ea | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
age | 1.000 | 0.593 | -0.073 | 0.030 | 0.187 | 0.226 | -0.294 | -0.030 | 0.015 | 0.223 | 0.059 | -0.008 | 0.000 | -0.019 | -0.139 | -0.082 | -0.183 | -0.002 | 0.046 |
year | 0.593 | 1.000 | -0.057 | -0.101 | 0.147 | 0.217 | -0.521 | 0.084 | 0.001 | 0.301 | 0.077 | 0.061 | -0.014 | 0.080 | -0.242 | -0.165 | -0.244 | 0.077 | -0.010 |
sex | -0.073 | -0.057 | 1.000 | 0.006 | 0.000 | 0.021 | -0.014 | -0.088 | 0.158 | 0.126 | 0.116 | 0.359 | -0.130 | 0.211 | 0.229 | 0.251 | 0.156 | 0.019 | -0.044 |
glang | 0.030 | -0.101 | 0.006 | 1.000 | -0.050 | -0.051 | 0.063 | -0.014 | -0.043 | -0.095 | -0.071 | -0.088 | -0.044 | -0.099 | 0.098 | 0.092 | 0.038 | 0.037 | -0.002 |
part | 0.187 | 0.147 | 0.000 | -0.050 | 1.000 | 0.048 | -0.104 | 0.077 | 0.027 | 0.122 | 0.040 | 0.010 | 0.062 | 0.030 | -0.106 | -0.072 | -0.012 | -0.019 | 0.048 |
job | 0.226 | 0.217 | 0.021 | -0.051 | 0.048 | 1.000 | -0.202 | -0.023 | 0.060 | 0.078 | 0.025 | 0.000 | 0.028 | 0.015 | -0.060 | -0.063 | -0.066 | 0.010 | -0.018 |
stud_h | -0.294 | -0.521 | -0.014 | 0.063 | -0.104 | -0.202 | 1.000 | -0.074 | -0.033 | -0.135 | -0.023 | -0.032 | -0.002 | -0.056 | 0.174 | 0.152 | 0.186 | -0.087 | 0.102 |
health | -0.030 | 0.084 | -0.088 | -0.014 | 0.077 | -0.023 | -0.074 | 1.000 | -0.137 | -0.004 | -0.027 | -0.063 | 0.027 | 0.024 | -0.358 | -0.305 | -0.286 | -0.189 | 0.224 |
psyt | 0.015 | 0.001 | 0.158 | -0.043 | 0.027 | 0.060 | -0.033 | -0.137 | 1.000 | 0.048 | 0.046 | 0.123 | -0.073 | 0.003 | 0.268 | 0.293 | 0.177 | 0.146 | -0.163 |
jspe | 0.223 | 0.301 | 0.126 | -0.095 | 0.122 | 0.078 | -0.135 | -0.004 | 0.048 | 1.000 | 0.343 | 0.263 | 0.099 | 0.097 | -0.080 | -0.075 | -0.041 | -0.007 | 0.083 |
qcae_cog | 0.059 | 0.077 | 0.116 | -0.071 | 0.040 | 0.025 | -0.023 | -0.027 | 0.046 | 0.343 | 1.000 | 0.259 | 0.387 | 0.074 | -0.034 | -0.078 | -0.024 | -0.025 | 0.184 |
qcae_aff | -0.008 | 0.061 | 0.359 | -0.088 | 0.010 | 0.000 | -0.032 | -0.063 | 0.123 | 0.263 | 0.259 | 1.000 | -0.071 | 0.141 | 0.251 | 0.331 | 0.216 | 0.128 | -0.114 |
amsp | 0.000 | -0.014 | -0.130 | -0.044 | 0.062 | 0.028 | -0.002 | 0.027 | -0.073 | 0.099 | 0.387 | -0.071 | 1.000 | 0.003 | -0.152 | -0.249 | -0.073 | -0.029 | 0.221 |
erec_mean | -0.019 | 0.080 | 0.211 | -0.099 | 0.030 | 0.015 | -0.056 | 0.024 | 0.003 | 0.097 | 0.074 | 0.141 | 0.003 | 1.000 | 0.030 | 0.038 | 0.015 | 0.062 | -0.035 |
cesd | -0.139 | -0.242 | 0.229 | 0.098 | -0.106 | -0.060 | 0.174 | -0.358 | 0.268 | -0.080 | -0.034 | 0.251 | -0.152 | 0.030 | 1.000 | 0.716 | 0.606 | 0.408 | -0.454 |
stai_t | -0.082 | -0.165 | 0.251 | 0.092 | -0.072 | -0.063 | 0.152 | -0.305 | 0.293 | -0.075 | -0.078 | 0.331 | -0.249 | 0.038 | 0.716 | 1.000 | 0.530 | 0.332 | -0.463 |
mbi_ex | -0.183 | -0.244 | 0.156 | 0.038 | -0.012 | -0.066 | 0.186 | -0.286 | 0.177 | -0.041 | -0.024 | 0.216 | -0.073 | 0.015 | 0.606 | 0.530 | 1.000 | 0.505 | -0.481 |
mbi_cy | -0.002 | 0.077 | 0.019 | 0.037 | -0.019 | 0.010 | -0.087 | -0.189 | 0.146 | -0.007 | -0.025 | 0.128 | -0.029 | 0.062 | 0.408 | 0.332 | 0.505 | 1.000 | -0.566 |
mbi_ea | 0.046 | -0.010 | -0.044 | -0.002 | 0.048 | -0.018 | 0.102 | 0.224 | -0.163 | 0.083 | 0.184 | -0.114 | 0.221 | -0.035 | -0.454 | -0.463 | -0.481 | -0.566 | 1.000 |
Manufacturing one salami (x) requires 12 oz of beef and 4 oz of pork. Manufacturing one bologna (y) requires 10 oz of beef and 3 oz of pork. There are 200 kg of beef and 50 kg of pork available. Beef sells at 180 bht/kg and pork at 150 bht/kg. Hot dogs are sold at 110 bht per package and Bologna at 50 bht per package. Determine the optimal units of hot dogs and bologna for maximum profit.
\[\eqalign{ x& y& mx& y2 &dy^2& var & value \\ \hline 1& 8& 2.89999& 7.19999& 0.6400 & m& 2.90 \\ 2& 10& 5.79999& 10.09999& 0.0100& b &4.30 \\ 3& 12& 8.69999& 12.99999& 1.0000& &&\\ 4& 15& 11.59999& 15.89999& 0.8100& &&\\ 5& 20& 14.49999& 18.79999& 1.4400& SumErr& 3.9\\ }\]
Residual standard error: 0.9661 on 3 degrees of freedom
Multiple R-squared: 0.9346, Adjusted R-squared: 0.9128
F-statistic: 42.86 on 1 and 3 DF, p-value: 0.007246
Deviance Residuals:
1 2 3 4 5
-0.2 0.8 -0.2 -1.2 0.8
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.2000 1.0132 5.132 0.01433 *
x 2.0000 0.3055 6.547 0.00725 **
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’
0.05 ‘.’ 0.1 ‘ ’ 1
\[\tiny\begin{matrix} Criteria & & Hot\ dogs & Bologna &Totals & Relat & Limit & Notes\\ \hline Amt & used& kg/unit & kg/unit & kg & & kg & Amt\ left \\ Beef & & 0.4 & 0.3 & 200 & <= & \color{green}{200} & 0 \\ Pork & & 0.1 & 0.2 & 50 & <= & \color{green}{100} & 50 \\ \hline Units& made & \color{yellow}{500} & \color{yellow}{0} & & & & & \\ \hline Costs: & bht/kg & & & & & & & \\ Beef & 180 & 72.00 & 54.00 & 36000.00 & & & \\ Pork & 150 & 15.00 & 0.85 & 7500.00 & & & & \\ \hline Price & bht/piece & 110 & 50 & 55000.00 & & & \\ \hline Profit & & & & \color{red}{11500.00} & & & \\ \hline \end{matrix}\]
Demographic info | Personal Situation | Mental Health factors | Empathy | Mental Stability |
---|---|---|---|---|
id, age, year, sex, glang | part, job, stud_h, health, psyt | jspe, qcae_cog, qcae_aff, amsp, erec_mean | GERT, cesd, stai_t | mbi_ex, mbi_cy, mbi_ea |