KASUS 2

set.seed(221016)
n1<-rnorm(n=300,mean=100,sd=4)
n2<-rnorm(n=150,mean=500,sd=5)
n3<-rnorm(n=50,mean=1000,sd=6)
dtpopulasi<-c(n1,n2,n3);dtpopulasi
##   [1]   96.95875   95.03914   96.73495  105.23011   99.22354   98.93319
##   [7]   97.35375  102.95294   97.27778   96.88068   97.73295   95.12661
##  [13]  104.71383  101.38348  101.48594  101.73075  101.67222  100.98280
##  [19]  100.77520   98.04030  107.61185   99.31551  100.29827   99.93887
##  [25]   95.51251  100.63758  100.25044  101.53952   94.02382  104.61342
##  [31]   96.22441  106.94585   98.98697   96.75169  107.76376   99.57732
##  [37]  103.69807   98.46553  105.43250  101.57443   99.18080  103.63932
##  [43]  101.57662   95.69770  101.26130   99.16981   94.58581   97.52106
##  [49]  102.19443   99.92953   97.00932  103.73073   96.92912  101.00702
##  [55]   96.21135  106.28850   99.33563   93.73950  104.79601   97.79514
##  [61]  102.97254  104.70459   98.04081   99.87831   99.40489   98.36239
##  [67]   96.70940  100.13914  104.21207   93.29688   96.89165   98.58928
##  [73]   94.59987  100.97709   98.35444   95.96803   97.43062   98.77853
##  [79]   99.29803   99.87813  101.64788   99.32104  103.16074   98.87861
##  [85]  104.10644   95.08721   98.63867   97.43141   97.66054   95.92635
##  [91]   99.95378   98.71494   92.79382  102.89837   99.28094   96.31177
##  [97]  104.17317   98.72733   98.63625  107.11682  106.31699   97.92810
## [103]  105.58577   99.02303  102.65375   94.13620   96.84587   99.64812
## [109]  100.24570   94.65547  102.04212   94.47492  101.10085  101.09565
## [115]   91.05045   97.81574  102.30464   96.27536   97.58165  102.93120
## [121]   96.72798   98.44723   95.90860  107.65453   95.08471   99.93821
## [127]   99.61532  102.64851   94.24557   98.97428  106.52725   92.22859
## [133]   95.64544   96.82718   93.51406  104.35784   95.21227  100.80514
## [139]  104.01333   90.45112   95.84164   93.98924  100.23385  101.12163
## [145]  109.75074  109.19107   95.86315  100.01027   92.44228   98.32512
## [151]  102.17717  102.13241  101.61150  106.26932  102.19619   96.36215
## [157]   99.44357   99.68058  101.97327  104.28606  102.20323  101.84928
## [163]   97.64426  106.82420  107.21680  102.99001   96.93145  103.86751
## [169]  105.82235   98.48598   99.76477   97.78333  100.76447   95.50614
## [175]  103.15108   98.58600   99.17194  103.93796  100.40856  102.49511
## [181]  101.17055   99.15227   98.32383   97.43496   96.11360  102.40297
## [187]  101.72262   99.74787  101.01208  101.83249   94.46777   93.54436
## [193]   96.16246   99.76678   98.00035  100.12457   96.33743   99.77498
## [199]   91.58906  101.02289   98.11563  100.21475  100.18712   99.11141
## [205]  110.21716   98.82903  100.41222  103.46857  106.60937   96.97780
## [211]   90.72520  100.22422   99.98373  103.10902   94.01417  102.87538
## [217]  107.05885  100.23694   99.76586   96.09238  104.71203   99.92762
## [223]   97.48337  106.03909  104.14653  102.87030   94.45635   97.72435
## [229]   93.25325   98.14079   97.65561   99.76908  102.33901  104.66340
## [235]   98.10561   95.73206  101.52570   89.33788   97.93437  101.76408
## [241]  104.36527   97.03456  102.41727   93.83892  107.69361   98.19821
## [247]   98.40750   95.19272   97.54244  101.84732  100.67881  105.07009
## [253]  103.30824   95.93189   98.63980   92.20577  100.41952   98.67050
## [259]   92.06594   98.18889  103.39955  102.97427   96.02682  103.63048
## [265]   97.34502  104.28111  100.14241  101.94419  106.93397   96.20781
## [271]  104.03251  102.73831   94.83716  100.30037  100.52726  100.62805
## [277]   99.41306   95.64711  104.77514  101.82063  103.05824   96.73761
## [283]   94.38926   96.01390  101.49487   94.60070   99.22423   98.20920
## [289]  102.39167  103.33230   96.08148   99.14358  100.60775   98.98831
## [295]  106.14558  102.05659   96.66514  106.12045  105.29207  102.85727
## [301]  499.12954  503.98863  498.10694  497.30528  498.70187  500.62897
## [307]  498.81005  500.19713  501.79500  497.61566  498.32112  498.02521
## [313]  503.48500  485.07063  504.69349  498.29853  497.17553  505.60130
## [319]  497.15356  504.83025  497.94909  501.25623  503.07858  500.10654
## [325]  492.47896  489.44899  498.69189  510.47460  500.27887  495.64637
## [331]  506.06657  499.10692  499.98807  496.73118  497.73354  505.65279
## [337]  502.76177  495.22024  494.15816  494.91243  486.74084  510.36624
## [343]  497.24883  496.97424  496.08966  503.11194  496.92327  494.63333
## [349]  503.54399  504.27154  493.66467  509.31427  501.76906  500.25926
## [355]  516.04633  501.26134  493.20646  496.36457  494.54664  508.71892
## [361]  501.03223  503.74114  498.64579  503.09700  498.25828  502.73705
## [367]  502.16853  507.35225  504.36260  496.90386  501.21848  498.37062
## [373]  515.43137  502.33300  512.17265  500.07638  487.81555  495.68400
## [379]  502.30061  490.50557  502.06298  501.42027  495.58290  490.09834
## [385]  498.29715  506.06108  510.15902  501.02963  493.51865  500.07340
## [391]  495.26376  499.83953  503.65470  497.07633  495.22884  496.21905
## [397]  502.86302  499.40206  495.65342  502.66373  496.30411  492.92703
## [403]  493.84079  501.61180  502.97319  508.11724  496.01414  497.25644
## [409]  503.44502  502.91861  502.62434  491.23008  495.85828  495.46313
## [415]  505.76396  500.16542  496.83541  501.57794  500.67367  501.66625
## [421]  495.64901  498.36809  501.13353  498.76803  500.23105  502.46185
## [427]  504.23402  503.43924  500.29476  500.67530  496.64168  497.41588
## [433]  508.21662  494.16113  496.11154  502.23870  495.61824  502.69582
## [439]  507.05548  504.63286  499.84143  504.02495  502.84257  498.92395
## [445]  499.91218  494.37260  500.11103  501.83951  506.40384  501.66262
## [451]  999.54815  995.75899  999.84685  997.73491  983.87245 1001.91740
## [457] 1000.17677  994.38297 1003.04618 1005.80705  995.14901  994.65852
## [463] 1009.17409 1004.04264 1008.25937 1005.38457  997.95717 1006.77507
## [469] 1004.76643 1002.74330  988.27591  997.81658  998.13756  999.42518
## [475] 1000.95236  996.89867 1006.18040  994.91102  996.67696  998.10428
## [481] 1009.03121 1009.50924  989.99559 1010.80809 1006.08517  987.54633
## [487] 1007.47087  995.43082  997.01881  995.79812  995.31473  989.57687
## [493]  985.49000  997.80952  996.20611  998.78093  999.73797  996.38815
## [499] 1004.30388  995.87640

Simple Random Sampling (SRS)

set.seed(221016)
ssrs<-sample(dtpopulasi,size=30);ssrs
##  [1]  485.07063   98.63867  506.06108   99.92762  104.28111 1004.76643
##  [7]  502.86302   98.58928   97.43062  497.30528   99.41306  104.03251
## [13]  101.38348  100.52726  499.83953  996.38815  103.10902  500.11103
## [19]  500.10654 1007.47087  101.57443  100.23385   98.63980  502.33300
## [25]  496.90386  101.84928  498.02521   95.64711  106.28850  100.23694
rat_srs<-mean(ssrs);rat_srs
## [1] 323.6349
var_srs<-var(ssrs);var_srs
## [1] 87467.35

Stratified Sampling

Alokasi Sama Besar

set.seed(221016)
ssbn1<-sample(n1,size=10);ssbn1
##  [1]  98.63867  99.92762 104.28111  98.58928  97.43062  99.41306 104.03251
##  [8] 101.38348 100.52726 103.10902
ssbn2<-sample(n2,size=10);ssbn2
##  [1] 507.3523 497.1536 494.9124 502.8426 501.5779 495.4631 501.2613 501.2562
##  [9] 498.9239 510.3662
ssbn3<-sample(n3,size=10);ssbn3
##  [1]  995.7981  999.4252  997.8095  996.8987  995.4308 1010.8081  997.9572
##  [8]  994.9110  997.7349  985.4900

Contoh

rat_ssbn1<-mean(ssbn1);rat_ssbn1
## [1] 100.7333
rat_ssbn2<-mean(ssbn2);rat_ssbn2
## [1] 501.111
rat_ssbn3<-mean(ssbn3);rat_ssbn3
## [1] 997.2264
var_ssbn1<-var(ssbn1);var_ssbn1
## [1] 5.762794
var_ssbn2<-var(ssbn2);var_ssbn2
## [1] 24.29311
var_ssbn3<-var(ssbn3);var_ssbn3
## [1] 37.65614
dtsampel1<-c(ssbn1,ssbn2,ssbn3)

Keseluruhan

# Rata2
rat_sbtot <- 1/500*((300*rat_ssbn1)+(150*rat_ssbn2)+(50*rat_ssbn3))
rat_sbtot
## [1] 310.4959
# Ragam
s1 <- (300*(300-10)*(var_ssbn1/10))
s1
## [1] 50136.31
s2 <- (150*(150-10)*(var_ssbn2/10))
s2
## [1] 51015.52
s3 <- (50*(50-10)*(var_ssbn3/10))
s3
## [1] 7531.228
var_sbtot <- 1/(500^2)*(s1+s2+s3)
var_sbtot
## [1] 0.4347322

Alokasi Proporsional

set.seed(221016)
spn1<-sample(n1,size=12);spn1
##  [1]  98.63867  99.92762 104.28111  98.58928  97.43062  99.41306 104.03251
##  [8] 101.38348 100.52726 103.10902  99.14358 101.57443
spn2<-sample(n2,size=6);spn2
## [1] 502.8426 501.5779 495.4631 501.2613 501.2562 500.1110
spn3<-sample(n3,size=3);spn3
## [1] 996.8987 989.5769 995.7981

Contoh

rat_spn1<-mean(spn1);rat_spn1
## [1] 100.6709
rat_spn2<-mean(spn2);rat_spn2
## [1] 500.4187
rat_spn3<-mean(spn3);rat_spn3
## [1] 994.0912
var_spn1<-var(spn1);var_spn1
## [1] 5.004826
var_spn2<-var(spn2);var_spn2
## [1] 6.656554
var_spn3<-var(spn3);var_spn3
## [1] 15.58732
dtsampel2<-c(spn1,spn2,spn3)

Keseluruhan

rat_ptot <- 1/500*((300*rat_spn1)+(150*rat_spn2)+(50*rat_spn3))
rat_ptot
## [1] 309.9373
s11 <- (300*(300-12)*(var_spn1/12))
s11
## [1] 36034.75
s22 <- (150*(150-6)*(var_spn2/6))
s22
## [1] 23963.6
s33 <- (50*(50-2)*(var_spn3/2))
s33
## [1] 18704.79
var_ptot <- 1/(500^2)*(s11+s22+s33)
var_ptot
## [1] 0.3148125

GABUNGAN DISTRIBUSI NORMAL

set.seed(221016)
n1<-rnorm(n=300,mean=100,sd=4)
n2<-rnorm(n=150,mean=500,sd=5)
n3<-rnorm(n=50,mean=1000,sd=6)
dtpopulasi<-c(n1,n2,n3)
rat_pop<-mean(dtpopulasi)
ragam_pop<-var(dtpopulasi)
hasil0 <- cbind(rat_pop,ragam_pop)
colnames(hasil0)<-c("Rata Populasi","Ragam Populasi")
as.data.frame(hasil0)
##   Rata Populasi Ragam Populasi
## 1      309.7579        85025.1
# Simple Random Sampling
ssrs<-sample(dtpopulasi,size=30)
rat_srs<-mean(ssrs)
var_srs<-var(ssrs)
ukuran.contoh <- c("n=30")
hasil1 <- cbind(ukuran.contoh,rat_srs,var_srs)
colnames(hasil1)<-c("Ukuran Contoh","Rata Contoh SRS","Ragam Contoh SRS")
as.data.frame(hasil1)
##   Ukuran Contoh  Rata Contoh SRS Ragam Contoh SRS
## 1          n=30 306.204592571114 73068.9421063023
# Stratified Sampling
## Alokasi Sama Besar
ssbn1<-sample(n1,size=10)
ssbn2<-sample(n2,size=10)
ssbn3<-sample(n3,size=10)
### Rata dan Ragam Contoh
rat_ssbn1<-mean(ssbn1)
rat_ssbn2<-mean(ssbn2)
rat_ssbn3<-mean(ssbn3)
var_ssbn1<-var(ssbn1)
var_ssbn2<-var(ssbn2)
var_ssbn3<-var(ssbn3)
### Rata dan Ragam Keseluruhan
rat_sbtot <- 1/500*((300*rat_ssbn1)+(150*rat_ssbn2)+(50*rat_ssbn3))
s1 <- (300*(300-10)*(var_ssbn1/10))
s2 <- (150*(150-10)*(var_ssbn2/10))
s3 <- (50*(50-10)*(var_ssbn3/10))
var_sbtot <- 1/(500^2)*(s1+s2+s3)
rata_seragam <- c(rat_ssbn1,rat_ssbn2,rat_ssbn3) 
ragam_seragam <- c(var_ssbn1,var_ssbn2,var_ssbn3)
ukuran.contoh <- c("n=10","n=10","n=10")
hasil2 <- cbind(ukuran.contoh,rat_sbtot,var_sbtot,rata_seragam,ragam_seragam)
colnames(hasil2)<-c("Ukuran Contoh","Rata Keseluruhan Stratified Seragam","Ragam Keseluruhan Stratified Seragam","Rata Contoh Stratified Seragam","Ragam Contoh Stratified Seragam")
as.data.frame(hasil2)
##   Ukuran Contoh Rata Keseluruhan Stratified Seragam
## 1          n=10                    309.332903878263
## 2          n=10                    309.332903878263
## 3          n=10                    309.332903878263
##   Ragam Keseluruhan Stratified Seragam Rata Contoh Stratified Seragam
## 1                     1.12058546350727               98.1199143206425
## 2                     1.12058546350727               500.786072628426
## 3                     1.12058546350727               1002.25133497349
##   Ragam Contoh Stratified Seragam
## 1                26.9636599096724
## 2                18.2702124080928
## 3                35.9753930283642
## Alokasi Proporsional
spn1<-sample(n1,size=12)
spn2<-sample(n2,size=6)
spn3<-sample(n3,size=2)
### Rata dan Ragam Contoh
rat_spn1<-mean(spn1)
rat_spn2<-mean(spn2)
rat_spn3<-mean(spn3)
var_spn1<-var(spn1)
var_spn2<-var(spn2)
var_spn3<-var(spn3)
### Rata dan Ragam Keseluruhan
rat_ptot <- 1/500*((300*rat_spn1)+(150*rat_spn2)+(50*rat_spn3))
s11 <- (300*(300-12)*(var_spn1/12))
s22 <- (150*(150-6)*(var_spn2/6))
s33 <- (50*(50-2)*(var_spn3/2))
var_ptot <- 1/(500^2)*(s11+s22+s33)
rata_proporsional<-c(rat_spn1,rat_spn2,rat_spn3)
ragam_proporsional<-c(var_spn1,var_spn2,var_spn3)
ukuran.contoh <- c("n=12","n=6","n=2")
hasil3 <- cbind(ukuran.contoh,rat_ptot,var_ptot,rata_proporsional,ragam_proporsional)
colnames(hasil3)<-c("Ukuran Contoh","Rata Keseluruhan Stratified Proporsional","Ragam Keseluruhan Stratified Proporsional","Rata Contoh Stratified Proporsional","Ragam Contoh Stratified Proporsional")
as.data.frame(hasil3)
##   Ukuran Contoh Rata Keseluruhan Stratified Proporsional
## 1          n=12                         308.993335593998
## 2           n=6                         308.993335593998
## 3           n=2                         308.993335593998
##   Ragam Keseluruhan Stratified Proporsional Rata Contoh Stratified Proporsional
## 1                          1.35107832732192                    98.8704440194919
## 2                          1.35107832732192                    499.257643161624
## 3                          1.35107832732192                    998.937762338153
##   Ragam Contoh Stratified Proporsional
## 1                     27.2072448362539
## 2                     38.9835074127094
## 3                     1.28066026974834