KASUS 1

set.seed(221016)
dtnorm<-rnorm(n=500,mean=100,sd=5);dt
## function (x, df, ncp, log = FALSE) 
## {
##     if (missing(ncp)) 
##         .Call(C_dt, x, df, log)
##     else .Call(C_dnt, x, df, ncp, log)
## }
## <bytecode: 0x000001877d2fe1d8>
## <environment: namespace:stats>
mean(dtnorm)
## [1] 99.73688
var(dtnorm)
## [1] 24.11463
hist(dtnorm, main = "Normal Distribution")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")

set.seed(221016)
s5<-sample(dtnorm,size=5);s5
## [1]  85.07063  98.29833 106.06108  99.90953 105.35139
s10<-sample(dtnorm,size=10);s10
##  [1] 103.97203 102.86302  98.23660  96.78828  97.30528  99.26633 105.04064
##  [8] 101.72935 100.65908  99.83953
s30<-sample(dtnorm,size=30);s30
##  [1] 106.06108 103.88627 100.11103 100.10654 100.65908 101.96803 100.29231
##  [8]  98.29975 102.33300  96.90386 102.31160  98.02521  94.55888 107.86063
## [15] 100.29617 104.54915  90.50557 108.71892 103.59422  90.25722 103.43924
## [22]  89.62194 100.51071 108.26172  95.45269  96.46583  91.23008 107.52601
## [29] 101.37606  97.07568
rata.s5<-mean(s5)
rata.s10<-mean(s10)
rata.s30<-mean(s30)
ragam.s5<-var(s5)
ragam.s10<-var(s10)
ragam.s30<-var(s30)
set.seed(221016)
iterasi<-100
n<-5
means.s5<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n)
  means.s5[i]<-mean(p)
}
hist(means.s5,main = "Histogram Rata-rata dari 5 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 5 Sampel")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(means.s5), lty=2, lwd=3, col="red")

# Uji Normalitas
library(nortest)
ns5<-nortest::lillie.test(means.s5)
set.seed(221016)
iterasi<-100
n<-10
means.s10<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n)
  means.s10[i]<-mean(p)
}
hist(means.s10,main = "Histogram Rata-rata dari 10 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 10 Sampel")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(means.s10), lty=2, lwd=3, col="red")

# Uji Normalitas
library(nortest)
ns10<-nortest::lillie.test(means.s10)
set.seed(221016)
iterasi<-100
n<-30
means.s30<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n)
  means.s30[i]<-mean(p)
}
hist(means.s30,main = "Histogram Rata-rata dari 30 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 30 Sampel")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(means.s30), lty=2, lwd=3, col="red")

# Uji Normalitas
library(nortest)
ns30<-nortest::lillie.test(means.s30)
mean(means.s5)
## [1] 99.64863
mean(means.s10)
## [1] 99.47457
mean(means.s30)
## [1] 99.68001
set.seed(221016)
iterasi<-100
n<-5
var.s5<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n)
  var.s5[i]<-var(p)
}
hist(var.s5,main = "Histogram Varians dari 5 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Varians 5 Sampel")
abline(v=var(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(var.s5), lty=2, lwd=3, col="red")

set.seed(221016)
iterasi<-100
n<-10
var.s10<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n)
  var.s10[i]<-var(p)
}
hist(var.s10,main = "Histogram Varians dari 10 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Varians 10 Sampel")
abline(v=var(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(var.s10), lty=2, lwd=3, col="red")

set.seed(221016)
iterasi<-100
n<-30
var.s30<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n)
  var.s30[i]<-var(p)
}
hist(var.s5,main = "Histogram Varians dari 30 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Varians 30 Sampel")
abline(v=var(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(var.s30), lty=2, lwd=3, col="red")

mean(var.s5)
## [1] 25.69085
mean(var.s10)
## [1] 25.51659
mean(var.s30)
## [1] 24.68252

GABUNGAN DISTRIBUSI NORMAL

set.seed(221016)
dtnorm<-rnorm(n=500,mean=100,sd=5)
rata.pop<-mean(dtnorm)
var.pop<-var(dtnorm)
rata_norm <- c(mean(s5),mean(s10),mean(s30)) 
ragam_norm <- c(var(s5),var(s10),var(s30))
ukuran.contoh <- c("n=5","n=10","n=30")
rata.pengulangan.100x<-c(mean(means.s5),mean(means.s10),mean(means.s30))
hasil1 <- cbind(ukuran.contoh,rata.pop,var.pop,rata_norm,ragam_norm,rata.pengulangan.100x)
colnames(hasil1)<-c("Ukuran Contoh","Rata Populasi Normal","Ragam Populasi Normal","Rata Contoh","Ragam Contoh","Rata Pengulangan 100x")
as.data.frame(hasil1)
##   Ukuran Contoh Rata Populasi Normal Ragam Populasi Normal      Rata Contoh
## 1           n=5     99.7368817482474      24.1146279082558 98.9381932192459
## 2          n=10     99.7368817482474      24.1146279082558  100.57001252319
## 3          n=30     99.7368817482474      24.1146279082558  100.07528242561
##       Ragam Contoh Rata Pengulangan 100x
## 1 71.3816926959421      99.6486329567975
## 2 7.86756801568658      99.4745729128662
## 3  28.780919600471       99.680006344368
# Histogram Rata-rata Sampel dengan Pengulangan 100x
par(mfrow=c(3,1))
set.seed(221016)
iterasi<-100
n1<-5
n2<-10
n3<-30

means.s5<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n1)
  means.s5[i]<-mean(p)
}
hist(means.s5,main = "Histogram Rata-rata dari 5 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 5 Sampel")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(means.s5), lty=2, lwd=3, col="red")

means.s10<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n2)
  means.s10[i]<-mean(p)
}
hist(means.s10,main = "Histogram Rata-rata dari 10 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 10 Sampel")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(means.s10), lty=2, lwd=3, col="red")


means.s30<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtnorm, n3)
  means.s30[i]<-mean(p)
}
hist(means.s30,main = "Histogram Rata-rata dari 30 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 30 Sampel")
abline(v=mean(dtnorm), lty=2, lwd=3, col="blue")
abline(v=mean(means.s30), lty=2, lwd=3, col="red")

shapiro.test(means.s5)
## 
##  Shapiro-Wilk normality test
## 
## data:  means.s5
## W = 0.98804, p-value = 0.5108
# Uji Normalitas-Liliefors (Kolmogorov Smirnov)
ns5<-nortest::lillie.test(means.s5)$p.value
ns10<-nortest::lillie.test(means.s10)$p.value
ns30<-nortest::lillie.test(means.s30)$p.value
p.value<-c(ns5,ns10,ns30)
uji.normal <- cbind(ukuran.contoh,p.value)
colnames(uji.normal)<-c("Ukuran Contoh","Nilai P-value Liliefors")
as.data.frame(uji.normal)
##   Ukuran Contoh Nilai P-value Liliefors
## 1           n=5       0.560112342623957
## 2          n=10        0.55168384502463
## 3          n=30        0.14418928789647

DISTRIBUSI GAMMA

set.seed(221016)
dtgamma<-rgamma(n=500,shape = 4,scale = 2);dtgamma
##   [1]  4.4442100 12.2420556 10.8376244  5.9388531  6.0376526  3.8214351
##   [7]  4.6851714 14.5201442  3.9122024 12.1037677  8.3539361  8.4589671
##  [13]  8.7125792  8.6516013  7.9495135  7.7439122  5.2868848 12.2370215
##  [19]  5.1379260  6.9429308  6.8187114  7.2362267  8.5141601  2.5258791
##  [25]  5.1234524 15.0049018  6.0844641  3.1306313  6.6102057  7.8950147
##  [31] 10.7346436  9.1565518  5.5388756 10.8181706  8.5524678  3.5539979
##  [37] 16.6743873  6.9982764  4.8731966 14.9232451 10.2241280  7.9694293
##  [43]  6.4936541  7.9736688  3.9046038 14.7360438 10.7858478  4.5406075
##  [49]  5.0894589 13.4638855 13.8309084 20.9232236  4.2603010  2.4720946
##  [55] 10.2932691  7.9438198  5.5453398  5.9998440  5.9040434  7.1772288
##  [61]  3.7581599  6.3792973 13.5839566  3.5923162  3.1587432  4.8223273
##  [67]  4.9826712  7.3713460  9.4263662  5.7775503  9.9736907  6.3435371
##  [73]  8.9128877  5.2505756  5.7824520  8.3556780  4.2112478 13.2000408
##  [79]  6.1159542  3.2792891  4.3604725  7.2033059  3.8261178  9.0405494
##  [85]  2.7857124  5.4836518  8.9607651  5.0853329 10.0103830  4.2738710
##  [91]  6.9594904 15.9911458  3.1571680  4.9877278  9.6966577  2.6520203
##  [97] 12.0263779  2.2400526  3.5192522  2.7421090 11.6698525  3.2378110
## [103] 10.5462814  7.9698849 11.0825712 15.2254854  3.2741317  8.0885014
## [109] 19.0921350 18.2373247  3.6651315  5.0726255  5.5209575  4.1076657
## [115]  8.5885771 14.0926682  9.2050759  4.0106631  5.4466465  8.9675091
## [121] 11.5833192  9.2126304  8.8367148  4.9698257  7.6773599 15.6127398
## [127] 10.3127493  6.2359507 13.5056764  5.6553934  4.3784340  7.7333545
## [133]  3.4274672  5.7184716  6.2468507  5.1902025  9.5285134  8.1377637
## [139]  6.2294786 27.5994576  9.4282168  8.7040908  6.7661404  4.7709801
## [145]  5.4260478  5.7574555  3.9931828  4.6413702  7.9895221  5.3482936
## [151]  5.6954848  6.1934787 16.4640605  5.1158846 10.6205212 14.5476209
## [157] 23.8607793  4.7168679 10.2102844  2.5204610  2.4786708  7.2233898
## [163]  6.7826927  7.4733615 10.5291972  5.2505664 13.7887525 11.4160311
## [169]  9.9423789  2.7747676  3.7582888  5.3688925  6.7343001  9.3589086
## [175] 12.0418183  5.3401096  3.5177690 22.5918022  5.3991377  4.5008918
## [181]  7.3851713  6.0893259  5.4160335  5.9547959  4.8898981  3.2237311
## [187] 12.5459467 10.4365924  3.7118039 14.1739692  5.8116044  9.6623123
## [193] 12.0579117  6.3392214  3.7767504  2.0902003 11.5773622  7.1338428
## [199]  8.9367475 14.9886345  3.9021284 15.0836176  7.5018978  7.5998167
## [205]  6.4617356  6.5530866  8.8066316 10.1529944  4.2809131  2.6054555
## [211]  8.4681546  2.8604296  7.9049195 12.0281441  9.6904430  8.5375710
## [217] 14.1147020  8.0379506  6.8622165 13.9289175  9.0559326  4.2280659
## [223]  4.7551374  9.9278604  6.3637638  6.5749661  5.1286855  2.8537825
## [229]  6.1378419 13.5155649 11.7378829  3.5024327  5.6001951  8.1525270
## [235]  7.5014783  7.8074637  5.8130113 11.8191247  5.0319654  4.9436368
## [241]  7.9716370  9.4933501  7.0799517 12.1845840  7.3998645  5.5150612
## [247]  4.1211208  9.9359021 10.6429140  8.9984642  2.8233564 11.8692458
## [253]  9.2192631  3.8800795  5.2208494  0.5938596  1.6312496  4.9188354
## [259]  4.6598917  4.8869127  5.1906547 10.5614456  3.0617997  2.4205159
## [265]  7.1953545 24.1576634  7.9757167  2.8392247 17.3771545 10.0795334
## [271]  6.0232778  9.6466159  3.9849242  8.7168276 13.5830348 10.6453194
## [277]  4.8747797  0.7918424 23.3103226  8.8547116 19.0726502  7.0572730
## [283] 16.7711571  6.2070696  8.6289077  8.1031799 13.6412839 10.9826331
## [289]  5.6354023  7.7917089  2.9899585  9.8021493  6.4580536  6.5596956
## [295] 10.5969008 10.6448111 15.1300989  3.6212757  8.2581216  9.4017294
## [301] 14.3921763  4.3349960  5.8180828  9.3544525  9.1016202 15.5142290
## [307]  1.6327220  4.8321304 11.2762628 12.0672935  2.6084940  5.8320500
## [313] 23.9497452  9.0393956  7.4084142  8.4797102  9.1004144  3.2095860
## [319]  7.5144691  4.7124294 15.9517083  5.8684476  4.3925480  8.5166412
## [325] 13.0578867  6.8818397  7.6952186  8.9673182 12.9520050  6.6364808
## [331]  7.0833372  8.4442365 12.6123764  8.2994755  6.7210548  6.7813830
## [337]  5.6587262 10.6037873 10.2289377  6.5754382  9.0285032 11.0896894
## [343]  4.3017095  6.5065273  9.7480167 13.0980864 10.7605613  5.7840344
## [349]  4.6960098  8.8152731 10.6567438  6.1741720  7.6064950  5.1995691
## [355]  8.5950775  4.1269539  5.8677219  9.1045870  5.7737141 15.3624583
## [361] 11.3090622  1.3878538 10.5375931  5.2554509  4.6248857  7.2729721
## [367]  6.8375484 13.2975837  8.2660524  7.6064121 18.6317832 14.2801389
## [373]  6.4757402  7.4043664  8.3982933 11.9235301  5.1396686  4.6259153
## [379]  4.9566287  6.5560520 11.3496810  3.6829029  9.6747074  3.0509986
## [385] 10.7761128  6.8944632  6.0223278 12.5107279  6.7770163 10.5378113
## [391]  4.2599359  7.3677405  6.9564882  8.1520402  9.4611108  7.6638570
## [397]  4.0112300  7.5443325 14.3307338  2.4250988  5.0267273 11.1326096
## [403]  6.6557424  2.7149929  4.6054977  9.9202397 10.1826288  7.4940255
## [409]  2.0251718 12.5100789 14.1148244  4.4522267  4.6120831  4.3423725
## [415]  6.4930328  2.5555905  4.7190110  8.9034096 11.6473912 12.9151267
## [421]  4.5931130 10.8436031  7.1915125  7.3086419 14.6221074 15.2240206
## [427] 10.6795119 17.1487053  2.1401041 14.3292276  4.1695270 13.1504336
## [433]  7.5168846  2.0822917  4.6161888  8.1268904 13.5171612  6.6983973
## [439]  9.5746788 13.7921462  7.2933054 11.2315294  8.8372453  3.3763870
## [445]  5.9113825  4.7300274  6.9351465  6.8082747  6.1970784 10.2625338
## [451]  2.9300014 16.2966178  3.3979242  9.2230187 11.6317457  2.8926108
## [457] 10.1297785  6.0648765  8.5035978  8.4545755  4.2541530 11.5714253
## [463]  9.3530969  9.1425471  5.5160875 15.4348621 15.4612742  5.8671016
## [469]  6.7030239  9.1055556  4.1592710 10.8312285  3.8638719 11.2372182
## [475] 12.3070885 24.6815597 10.3703432 10.2980551 12.3866305  9.8700784
## [481]  8.3171358  9.6440167  7.6437307  1.2635788  6.8091178  2.3172340
## [487]  6.0331254  9.3796946  9.4850370  5.5547034  9.3482617  9.3870322
## [493]  3.8884985  4.8150153  4.3473336  7.1234029  4.7778185  6.4419553
## [499]  8.5784295  6.2074896
mean(dtgamma)
## [1] 8.058266
var(dtgamma)
## [1] 17.04812
hist(dtgamma, main = "Gamma Distribution")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")

set.seed(221016)
g5<-sample(dtgamma,size=5);g5
## [1]  9.039396  8.960765  6.894463  4.228066 24.157663
g10<-sample(dtgamma,size=10);g10
##  [1]  6.703024  4.011230  6.343537  4.211248  9.354453  4.874780  6.023278
##  [8]  8.651601 13.583035  7.367740
g30<-sample(dtgamma,size=30);g30
##  [1]  6.8944632 12.0281441  6.9351465  8.5166412 13.5830348 14.9232451
##  [7]  6.7661404  5.2208494  7.4043664  7.6064121  7.2233898  5.8320500
## [13]  0.7918424  7.9438198  8.0379506  7.9694293  6.5560520 15.3624583
## [19]  8.5375710  0.5938596 17.1487053  2.3172340  5.3991377  4.2809131
## [25] 14.5476209 16.2966178  4.4522267  8.3171358  5.5209575 10.0103830
mean(g5)
## [1] 10.65607
mean(g10)
## [1] 7.112393
mean(g30)
## [1] 8.233927
var(g5)
## [1] 60.81241
var(g10)
## [1] 8.25734
var(g30)
## [1] 18.82518
set.seed(221016)
iterasi<-100
n<-5
means.g5<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n)
  means.g5[i]<-mean(p)
}
hist(means.g5,main = "Histogram Rata-rata dari 5 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 5 Sampel")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(means.g5), lty=2, lwd=3, col="red")

# Uji Normalitas
library(nortest)
nortest::lillie.test(means.g5)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  means.g5
## D = 0.070505, p-value = 0.2561
set.seed(221016)
iterasi<-100
n<-10
means.g10<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n)
  means.g10[i]<-mean(p)
}
hist(means.g10,main = "Histogram Rata-rata dari 10 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 10 Sampel")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(means.g10), lty=2, lwd=3, col="red")

# Uji Normalitas
library(nortest)
nortest::lillie.test(means.g10)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  means.g10
## D = 0.06113, p-value = 0.4743
set.seed(221016)
iterasi<-100
n<-30
means.g30<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n)
  means.g30[i]<-mean(p)
}
hist(means.g30,main = "Histogram Rata-rata dari 30 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 30 Sampel")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(means.g30), lty=2, lwd=3, col="red")

# Uji Normalitas
library(nortest)
nortest::lillie.test(means.g30)
## 
##  Lilliefors (Kolmogorov-Smirnov) normality test
## 
## data:  means.g30
## D = 0.069418, p-value = 0.2774
mean(means.g5)
## [1] 8.152948
mean(means.g10)
## [1] 7.940048
mean(means.g30)
## [1] 8.064358
set.seed(221016)
iterasi<-100
n<-5
var.g5<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n)
  var.g5[i]<-var(p)
}
hist(var.g5,main = "Histogram Varians dari 5 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Varians 5 Sampel")
abline(v=var(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(var.g5), lty=2, lwd=3, col="red")

set.seed(221016)
iterasi<-100
n<-10
var.g10<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n)
  var.g10[i]<-var(p)
}
hist(var.g10,main = "Histogram Varians dari 10 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Varians 10 Sampel")
abline(v=var(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(var.g10), lty=2, lwd=3, col="red")

set.seed(221016)
iterasi<-100
n<-30
var.g30<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n)
  var.g30[i]<-var(p)
}
hist(var.g5,main = "Histogram Varians dari 30 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Varians 30 Sampel")
abline(v=var(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(var.g30), lty=2, lwd=3, col="red")

mean(var.g5)
## [1] 18.76951
mean(var.g10)
## [1] 16.75298
mean(var.g30)
## [1] 16.94216

GABUNGAN DISTRIBUSI NORMAL

set.seed(221016)
dtgamma<-rgamma(n=500,shape = 4,scale = 2)
rata.pop.gamma<-mean(dtgamma)
var.pop.gamma<-var(dtgamma)
rata_gamma <- c(mean(g5),mean(g10),mean(g30)) 
ragam_gamma <- c(var(g5),var(g10),var(g30))
ukuran.contoh <- c("n=5","n=10","n=30")
rata.pengulangan.100x.gamma<-c(mean(means.g5),mean(means.g10),mean(means.g30))
hasil2 <- cbind(ukuran.contoh,rata.pop.gamma,var.pop.gamma,rata_gamma,ragam_gamma,rata.pengulangan.100x.gamma)
colnames(hasil2)<-c("Ukuran Contoh","Rata Populasi Gamma","Ragam Populasi Gamma","Rata Contoh","Ragam Contoh","Rata Pengulangan 100x")
as.data.frame(hasil2)
##   Ukuran Contoh Rata Populasi Gamma Ragam Populasi Gamma      Rata Contoh
## 1           n=5    8.05826567577401     17.0481246750786 10.6560706402587
## 2          n=10    8.05826567577401     17.0481246750786 7.11239254804058
## 3          n=30    8.05826567577401     17.0481246750786  8.2339265937647
##       Ragam Contoh Rata Pengulangan 100x
## 1 60.8124103621543      8.15294759263906
## 2 8.25734045108724      7.94004810218726
## 3 18.8251755796941      8.06435835048531
# Histogram Rata-rata Sampel dengan Pengulangan 100x
par(mfrow=c(3,1))
set.seed(221016)
iterasi<-100
n1<-5
n2<-10
n3<-30

means.g5<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n1)
  means.g5[i]<-mean(p)
}
hist(means.g5,main = "Histogram Rata-rata dari 5 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 5 Sampel")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(means.g5), lty=2, lwd=3, col="red")

means.g10<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n2)
  means.g10[i]<-mean(p)
}
hist(means.g10,main = "Histogram Rata-rata dari 10 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 10 Sampel")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(means.g10), lty=2, lwd=3, col="red")

means.g30<-rep(NA, iterasi)

for (i in 1:iterasi){
  p<-sample(dtgamma, n3)
  means.g30[i]<-mean(p)
}
hist(means.g30,main = "Histogram Rata-rata dari 30 Sampel dengan Pengulangan Sebanyak 100x",xlab = "Rata-rata 30 Sampel")
abline(v=mean(dtgamma), lty=2, lwd=3, col="blue")
abline(v=mean(means.g30), lty=2, lwd=3, col="red")

# Uji Normalitas-Liliefors (Kolmogorov Smirnov)
gs5<-nortest::lillie.test(means.g5)$p.value
gs10<-nortest::lillie.test(means.g10)$p.value
gs30<-nortest::lillie.test(means.g30)$p.value
p.value<-c(gs5,gs10,gs30)
uji.normal1 <- cbind(ukuran.contoh,p.value)
colnames(uji.normal1)<-c("Ukuran Contoh","Nilai P-value Liliefors")
as.data.frame(uji.normal1)
##   Ukuran Contoh Nilai P-value Liliefors
## 1           n=5       0.256053461971558
## 2          n=10       0.528855649264766
## 3          n=30       0.224694796638531